建设项目环境影响报告表 (污染影响类)

项目名称: 吉林省惠达粮米有限公司玉米烘干塔建设项目

建设单位(盖章): 吉林省惠达粮米有限公司

编制日期: 2025年8月

打印编号: 1743475042000

编制单位和编制人员情况表

项目编号 p4rf9i		p4rf9i				
建设项目名称		吉林省惠达粮米有限公司玉米烘干塔建设项目				
建设项目类别		41-091热力生产和依	· 中 中 中 中 中 中 中 中 中 日 日 日 日 日 日 日 日 日 日	自用的供热工程)		
环境影响评价文件	类型	报告表				
一、建设单位情况	兄		E 粮米			
单位名称 (盖章)	i con the	吉林省惠达粮米有限	公司 三			
统一社会信用代码	Į.	585763Y				
法定代表人(签章	70) 18325					
主要负责人签字)					
直接负责的主管人	员					
二、编制单位情况	7					
单位名称 (盖章)		吉林东北煤炭工业环	保研究有限公司			
统一社会信用代码		91 2201 0642321 6911 Q				
三、编制人员情况	2					
1. 编制主持人						
姓名 职业资标		各证书管理号	信用编号	签字		
宋晓丽	073522	43507220254	BH 020660	来略和		
2 主要编制人员						
姓名	主要	编写内容	信用编号	签字		
宋晓丽	全	部章节	BH 020660	来战和		

修改清单

序号	评审意见	修改说明
1	细化评价范围内环境敏感保护目标分布情况调查内	P5、6、20、21 及
	容,明确各敏感保护目标距烘干塔之间距离;核准项	附件
	目用地性质(附证明材料),充实项目规划符合性分	
	析内容。	
2	补充分析企业现状概况及实际建设内容,补充说明本	P16、20 及附图
	项目与现有稻米加工车间等的关系;核实特征因子监	
	测数据,补充厂界 50m 内敏感点的监测数据。	
3	细化工程分析内容,核准设备生产能力,核准粮食烘	P11、12、14
	干前后含水率,复核生物质燃料用量;细化检验工艺	
	过程及其环境影响分析内容; 复核工作制度, 一般情	
	况下,烘干塔需要连续运行。	
4	细化粮食烘干粉尘环境影响分析内容,细化抑尘罩设	P26、27、29、30
	置情况,明确其除尘机理,复核除尘效率;细化厂界	
	无组织排放粉尘达标排放分析内容。	
5	复核产噪设备种类、数量及源强(特别是烘干塔噪声	P31、32、33
	源强),复核噪声影响预测内容,细化噪声污染防治	
	措施。	
6	复核固体废物产生量,结合新版《固体废物分类与代码》	P34
	码目录》补充固体废物代码,细化固体废物储存情况。	TT 17/1. /LL
7	鉴于本项目距敏感保护目标较近,项目建设对敏感保护品标题的	见附件
	护目标影响较大,建议补充距项目较近处居民公众参	
	与意见。	DOC 基界原 界件
8	附生态环境分区管控平台查询分析结果; 复核项目生态环境保护措施监督检查清单; 复核监测计划; 规范	P36 及附图、附件
	心外境体扩拍她监督位旦俱早; 复核监侧 I 划;	
9		 详见报告其他修
9	マ 沙 灰 山 的 六	序光报音英他修 改部分
		以即刀

一、建设项目基本情况

建设项目名称	吉林省惠达粮米有限公司玉米烘干塔建设项目					
项目代码	无					
建设单位联系人	李	联系方式	136: 89			
建设地点	吉林_省(自治	I区) <u>长春</u> 市 <u>德惠</u> 道) <u>仲达街</u> (具体	县(区) <u>达家沟镇</u> (街 地址)			
地理坐标	(_125_度_	49 分 3.03 秒, 44	度 40 分 2.02 秒)			
国民经济行业类别	A0514 农产品初加工活动; D4430 热力生产和供应业	建设项目	四十一、电力、热力生产和供应业—91 热力生产和供应工程(包括建设单位自建自用的供热工程)			
建设性质	☑新建(迁建) □改建 □扩建 □技术改造	建设项目 申报情形	□首次申报项目 □不予批准后再次申报项目 □超五年重新审核项目 □重大变动重新报批项目			
项目审批(核准/ 备案)部门(选填)	无	项目审批(核准/ 备案)文号(选填)	无			
总投资 (万元)	200	环保投资 (万元)	20			
环保投资占比(%)	10	施工工期	3 个月			
是否开工建设	□否 用地 (用海) 2000m² 面积 (m²)					
专项评价设置情况		无				
规划情况	无					
规划环境影响评价情 况	无					
规划及规划环境影响 评价符合性分析	无					
其他符合性分析	一、"三线一单"符合性分析 根据《吉林省生态环境厅关于印发<吉林省生态环境准入 清单的函>》(吉环函[2024]158号),以习近平生态文明思想					

为指导,全面贯彻党的十九大特别是十九届四中、五中全会精神,坚持生态优先、绿色发展,建立以"三线一单"为核心的生态环境分区管控体系,提升生态环境治理体系和治理能力现代化水平,为筑牢东北生态安全屏障,强化黑土地保护利用,推进东中西"三大板块"建设,优化"一主、六双"产业空间布局,促进生态环境高水平保护和经济社会高质量发展,提供有力支撑和制度保障。

表 1-1 本项目与吉林省"三线一单"的协调性分析

	表 1-1 本项目与音杯省"二线一单"的协调性分	<u> </u>
项目	环境准入及管控要求	符合性
	禁止新建、扩建《产业结构调整指导目录》(现行)明确的淘汰类项目和引入《市场准入负面清单》(现行)禁止准入类事项。引入项目应符合园区规划、规划环境影响评价和区域产业准入负面清单要求。列入《产业结构调整指导目录》淘汰类的现状企业,应制定调整计划。生态环境治理措施不符合现行生态环境保护要求、资源能源消耗高、涉及大量排放区域超标污染物或持续发生生态环境投诉的现有企业,应制定整治计划。在调整、整治过渡期内,应严格控制相关企业生产规模,禁止新增产生环境污染的产能和产品。	符合
空布约 电局束	强化产业政策在产业转移过程中的引导和约束作用,严格控制在生态脆弱或环境敏感地区建设"两高"行业项目。严格高能耗、高物耗、高物耗和产能过剩、低水平重复建设项目,以及涉及危险化学品、重金属和其他具有重大环境风险建设项目的环评审批和备案。老工业城市和资源型城市在防止污染转移的基础上,应积极承接有利于延伸产业链、提高技术水平、促进资源综合利用、充分吸纳就业的产业,因地制宜发展优势特色产业。严格控制钢铁、焦化、电解铝、水泥和平板玻璃等行业新增产能,列入去产能的钢铁企业退出时须一并退出配套的烧结、球团、焦炉、高炉等设备。严控尿素、磷铵、电石、烧碱、聚氯乙烯、纯碱、黄磷等过剩行业新增产能,符合政策要求的先进工艺改造提升项目应实行等量或减量置换。	符合
污染 物排 放管 控	落实主要污染物总量控制和排污许可制度。新建、改建、扩建重点行业建设项目实行主要污染物排放减量置换。严格涉VOCs建设项目环境影响评价,逐步推进区域内VOCs排放等量或倍量削减替代。	不涉及
	空气质量未达标地区新建项目涉及二氧化硫、	不涉及

	氮氧化物、颗粒物、挥发性有机物(VOCs)全	
	面执行大气污染物特别排放限值。	
	推行秸秆全量化处置,持续推进秸秆肥料化、	
	饲料化、能源化、基料化和原料化,逐步形成	不涉及
	秸秆综合利用的长效机制。	
	推行秸秆全量化处置,持续推进秸秆肥料化、	
	饲料化、能源化、基料化和原料化,逐步形成	不涉及
	秸秆综合利用的长效机制。	
	新建、改建、扩建规模化畜禽养殖场(小区)	不涉及
	要实施雨污分流和粪便污水资源化利用。	一个沙汉
	到2025年,城镇人口密集区现有不符合防护距	
	离要求的危险化学品生产企业就地改造达标、	 不涉及
	搬迁进入规范化工园区或关闭退出,企业安全	一个沙汉
环境	和环境风险大幅降低。	
风险	加快完成饮用水水源保护区划界立标、隔离防	
防控	护等规范化建设,拆除、关闭保护区内排污口	
	和违法建设项目,完善风险防控与应急能力建	不涉及
	设和相关管理措施,保证饮用水水源水质达标	
	和水源安全。	
	推动园区串联用水,分质用水、一水多用和循	
	环利用,提高水资源利用率,建设节水型园区。	
	火电、钢铁、造纸、化工、粮食深加工等重点	 不涉及
资源	行业应推广实施节水改造和污水深度处理。鼓	小砂及
利用	励钢铁、火电、纺织印染、造纸、石油石化、	
要求	化工、制革等高耗水企业废水深度处理回用。	
	按照《吉林省黑土地保护条例》实施黑土地保	
	护,加大黑土区水土流失治理力度,发展保护	不涉及
	性耕作,促进黑土地可持续发展。	

根据《长春市人民政府办公厅关于印发长春市生态环境 分区管控方案的通知》(长府办发〔2024)24号)及《长春市生 态环境局关于印发<长春市生态环境准入清单>的函》(长环 函[2025]2号),以习近平生态文明思想为指导,全面贯彻党 的十九大和十九届二中、三中、四中、五中全会精神,充分 衔接《长春市国民经济和社会发展第十四个五年规划和 2035 年远景目标纲要》,在吉林省环境管控单元划定成果和生态 环境分区管控的总体要求框架下,进一步细化管控要求,形 成长春市生态环境准入清单,实现长春市以"三线一单"为 核心的生态环境分区管控体系。

表 1-2 本项目与长春市总体准入要求的协调性分析

管控	管 按要录	符合性
类别	日江女小	11 11 17

	空间布局	成结伊 推指放	水格局为基础,依托骨干交通网络,形一山四水、一廊四城"的多中心组团式。"一山四水"指东部大黑山脉及新凯河、河、雾开河和饮马河,是筑牢城市生态基底、孕育城市新功能新场景,组团式发展的重要载体。"一廊四城"是部产业走廊及中心综合服务城、东北开新城、西南国际汽车城和东南文化创意是承载城市新产业新业态,布局城市中心体系的重要载体。	本项目不 违背空间 布局约束 条件
		环京	大气环境质量持续改善。2025 年全市 环境空气质量达到省下达目标要求; 2035年继续改善(沙尘影响不计入)。	本项目废 气污染物 达标排放, 不影响大 气环境质 量
	污染 物排 放管 控	排 管	水环境质量持续改善。2025 年,全市水生态环境质量全面改善,劣V类水体全面消除,地表水国控断面达到或好于Ⅲ类水体比例达到56.3%,河流生态水量得到基本保障,生态环境质量实现根本好转,水生态系统功能初步恢复。2035年,全市水生态环境质量在满足水生态功能区要求外,河流生态水量得到根本保障,水生态系统功能全面改善。	本项目废水污染物 达标排放, 不影响水 环境质量
		污染物控制要求	实施20蒸吨以上燃煤锅炉升级改造,推动秸秆禁烧和综合利用。 全面推行清洁生产,加强重点企业清洁生产审核,推进重点行业改造生产流程。 加快产业园区绿色化循环化改造,建设绿色低碳的交通网络、建筑体系和工业体系,从源头减少能耗、物耗和污染物排放。	本项目使 用生物质 成型燃料, 符合污染 物管控要 求
	资源	水资源	2025 年用水量控制在30.20 亿立方米 内,2035 年用水量控制在34.5 亿立方 米。	符合。本项 目用公突 区域 区域 下 区域 下 下 下 下 下 下 下 下 下 下 下 下 下 下
		土地资源利用	2025 年耕地保有量不低于17858.88 平方千米;永久基本农田保护面积不低 于14766.90 平方千米;城镇开发边界 扩展倍数控制在2020 年城镇建设用地 规模的1.32 倍以内,面积控制在 1475.54	符合。本项目不会突破区域土地资源规划控制指标。

		平方千米以内。	
	能源利用	2025 年,煤炭消费总量控制在2711 万吨以内。	符合。本项 目不使用 燃煤,不会 突破域能 源费总量。
	其他	探索构建统一高效的环境产品交易体系,积极推进排污权、用水包发展内的环境产品交易,被人类市场主体绿色发展的的方。健全充分反映资源稀缺程度的的污水、均是全充分反映资源稀缺,将生态活垃圾的产品,有少人的人类,有一个人,不是一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个	本要生分废再水工废利发经项求活类旧生平业物用展济接行圾高源用高体合。
根	据《言	吉林省生态环境厅关于印发<吉林省	生态环境准

根据《吉林省生态环境厅关于印发<吉林省生态环境准 入清单的函>》(吉环函[2024]158号)、《长春市生态环境局 关于印发<长春市生态环境准入清单>的函》(长环函[2025]2 号),环境管控单元分为优先保护单元、重点管控单元和一 般管控单元,本项目位于德惠市城镇开发边界 (ZH22018320004),位于生态保护红线之外。因此,本项目 不涉及生态保护红线范围,符合生态保护红线要求。

表 1-3 管控单元要求一览表

		空间布局约束	1 城镇居民区、文化教育科学研究区等人口集中区域禁止畜禽养殖小区涉及氨等异味气体排放的生产生活动。除在安全或者产业布局等目外,原则上应避免大规模排放大气污染物的目布局建设。	本建物用烘属模气物染项1台锅玉,大放浇水的目制生炉米不规大。污项	
ZH 22 01 83 20 00 4	 2-重	污染物排放管控	1 加大燃煤锅,所以上,一个大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大	本 使锅 项 不	符合管控要求
		环境风险防控	1 严格管理涉及易导致环境风险的有毒有害和易燃易爆物质的生产、使用、贮运等新建、改扩建项目。 2 污染地块落实《污染地块土壤环境管理办法(试行)》要求,在环境调查、风险评估、治理与修复阶段实施	本属易境有和爆生用等项于导风毒易物产、新目涉致险有燃质、贮建不及环的害易的使运、	

		资	土壤与地下发利用的扩大人工	改扩建项目	
	T	资源开发效率	终止经营全生命周期 土壤和地下水污染防 治。 除在安全或者产业布 局等方面有特殊要求 的项目外,应严格控制 新建、扩建采用高污染 燃料的项目和设施。	本属、用燃制和、工作、工作、工作、工作、工作、工作、工作、工作、工作、工作、工作、工作、工作、	- day

综上,本项目的建设符合"生态红线、环境质量底线、 资源利用上线和环境负面准入清单"的相关要求。

二、产业政策相符性分析

1、产业结构相符性

本项目为玉米烘干项目,根据《产业结构调整指导目录》(2024年本),本项目不属于列出的"鼓励类"、"淘汰类"、"限制类"目录内,同时项目营运期使用的设备不属于淘汰类设备,因此本项目属于"允许类"。综上所述,本项目符合国家产业政策要求。

2、与《工业炉窑大气污染综合治理方案》相符性分析

表 1-3 本项目与《工业炉窑大气污染综合治理方案》相符性分析

重点任务	本项目相符性
(一)加大产业结构调整力度。 严格建设项目环境准入。加大落 后产能和不达标工业炉窑淘汰 力度。	本项目满足产业结构,不属 于限制类、淘汰类项目。
(二)加快燃料清洁低碳化替	本项目位置为热电联产供热管

代。加快淘汰燃煤工业炉窑。重 点区域取缔燃煤热风炉,基本淘 汰热电联产供热管网覆盖范围 内的燃煤加热、烘干炉(窑)。 网覆盖范围外。

(三)实施污染深度治理。推进工业炉窑全面达标排放。已有行业排放标准的工业炉窑,严格执行行业排放标准相关规定,配套建设高效脱硫脱硝除尘设施,确保稳定达标排放。全面加强无组织排放管理。

本项目热风炉大气污染物烟尘、二氧化硫执行《工业炉窑大气污染物排放标准》(GB9078-1996)表2和表4排放限值、氮氧化物执行《大气污染物综合排放标准》(GB16297-1996)表2新污染源大气污染物排放限值,严格执行行业排放标准,并配套布袋除尘器干烟气进行处理,满足污染深度治理措施。

(四)开展工业园区和产业集群综合整治。各地要加大涉工业炉窑类工业园区和产业集群的综合整治力度,结合"三线一单"(生态保护红线、环境质量底线、资源利用上线和生态环境准入清单)、规划环评等要求,进一步梳理确定园区和产业发展定位、规模及结构等。

本项目用地为工业用地(详见附件),满足用地规划。

3、与《长春市人民政府办公厅关于印发长春市空气、水环境、土壤环境质量巩固提升三个行动方案的通知》(长府办发[2021]14号)相符性分析

表	E 1-4 本项目与《长府办发[2021]14	号》相符性分析							
	长春市空气质量巩固提升行动实施方案								
(二)深 入进煤污控 果实制	7.加大燃煤锅炉淘汰力度。市区及榆树市、农安县、德惠市、公主岭市建成区原则上不再新建单台容量 29 兆瓦(40 蒸吨/小时)以下燃煤锅炉,其他区域原则上不再新建单台容量 14 兆瓦(20 蒸吨/小时)以下的燃煤锅炉。市区新建燃煤锅炉项目,大气污染物排放热行超低排放限值要求。按照国家、省政策的调整和要求,逐步开展燃煤锅炉淘汰工作。推动淘汰市城区单台容量 29 兆瓦(40 蒸吨/小时)以下燃煤锅炉。	符合,本项目新建1 台生物质锅炉用于玉 米烘干,规格分别为 4t/h,同时配套建设其 烟气处理设施。							
(三)深 入推 进工 业污	10.持续推进工业污染源全面达标排放。加大工业污染源烟气高效脱硫脱硝、除尘改造力度,确保各项污染物稳定达标排放。重点排污单位全部安装自动监控设备	符合,本项目热风炉烟 气采用布袋除尘器进 行烟气处理,确保各项 污染物稳定达标排放。							

染源	并与生态环境部门联网。对排放	
治理	不达标的企业按照"一企一策"	
111.77	的原则,限期整改到位。全面加	
	强工业无组织排放管控。	
	12. 加强"散乱污"企业监管。	
	建立"散乱污"企业动态管理机	
	制,对完成整治的"散乱污"企	 符合,吉林省惠达粮米
	业开展"回头看",及时更新动态	有限公司符合国家、省
	管理台账,坚决杜绝已取缔的"散	产业政策和当地产业
	乱污"企业死灰复燃、异地转移;	布局规划,土地、环保、
	对新发现的"散乱污"企业依法	工商等手续齐全,不属
	限期整治,对不符合国家产业政	于"散乱污"企业。
	策、治理无望的"散乱污"企业,	1 BY HU1.2 TETE.
	依法关停取缔。	
	20. 严格建筑施工扬尘管控。严	
	20. 广格廷巩旭工扬王官程。广 格实施建筑施工标准化管理,建	
	位	 符合,本项目对易产生
	立	付合, 本项目对 <i>勿</i> 广生 扬尘作业场地采取围
	工地建设喷淋雾化系统等除尘抑	拗至作业场地未取由 挡、围护以减少扬尘扩
	上地建议员	1日、国扩以版グ初王が 散。

イエンタ	同步使用。加大监管力度,对不	在施工场地安排员工
(五)深	达标的施工现场限期整改,情节 亚系的原工整本。	定期对未铺筑的临时
入推	严重的停工整改。加强建筑渣土	道路进行洒水处理,以
进扬	及运输车辆规范管理工作,严格	减少扬尘量。同时要求
尘污	落实密闭运输,依法打击不按规	运输建筑材料和清运
染治	定路线行驶、渣土抛撒滴漏以及	施工渣土等建筑垃圾
理	车轮带泥行驶、随意倾倒等违法	应用专用车辆,加盖蓬
	行为。加大混凝土搅拌车监管,	布减少洒落。限制车
	各混凝土搅拌站内必须配备抑尘	速,车辆进出、装卸场
	设施,出站前对混凝土搅拌车辆	地时应用水将轮胎冲
	进行冲洗。混凝土搅拌车辆要在	洗干净,不得带渣出
	出料口处加装防漏撒设施,在进	」 场。
	入工地作业时应遵守工地扬尘防	
	治要求。	
	长春市劣五类水体治理和水质巩固	提升实施方案
_	15. 推进节水行动。推进工	
(三)实	业节水,造纸、石油化工、食品	 本项目不属于高耗水
施水	发酵等高耗水行业推广节水新技	一行业,项目运营期仅涉
资源	术、新工艺和新设备,优先使用	及员工生活用水,耗水
保障	再生水,鼓励高耗水企业开展节	
工程	水技术改造和再生水回用改造,	三年77.1.0
	不断提高企业用水水平。	
(四)实	23.加强重点流域治理机制建	 吉林省惠达粮米有限
施水	设。流域内执行一级 A 标准	古林有思达根本有限 公司不属于直排企业,
施小 安全	的污水处理厂、直排企业水污染	公可不属于且排企业, 本项目生活污水排入
安生 保障	物(氨氮、COD、总磷)执行超低排	本项日生活污水排入 厂区内自建防渗旱厕,
	放管控要求。其中, 氨氮要控制	
工程	在 1 毫克/升以下, COD 要控制在	定期清掏不外排。

40 毫克/升以下,总磷执行以下要求:对位于饮用水源保护区内的污水处理设施、直排企业,尾水总磷浓度要控制在 0.05 毫克/升以下;位于水源地保护区外的污水处理设施、直排企业,总磷浓度控制在 0.4 毫克/升以下。

4、与《粮油仓储管理办法》(中华人民共和国国家发展 与改革委员会令第5号)相符性分析

表 1-5 本项目与《粮油仓储管理办法》相符性分析

关于污染源、危险源安全距离的规定

一、距有害元素的矿山、炼焦、炼油、煤气、化工(包括有毒化合物的生产)、塑料、橡胶制品及加工、人造纤维、油漆、农药、化肥等排放有毒气体的生产单位,不小于1000米;

二、距屠宰场、集中垃圾堆场、污水处理站等单位,不小于500米;

三、距砖瓦厂、混凝土及石膏制品厂等粉尘污染源,不小于100米。

本项目仅进行 粮食烘干,不涉 及粮食仓储,湿 玉米及干玉米 均不在厂区内 长期贮存。厂界 外 500m 范围内 无屠宰场、集中 垃圾堆场及污 水处理站; 厂界 外 1000m 范围 内无有害元素 的矿山、炼焦、 炼油、煤气、化 工(包括有毒化 合物的生产)、 塑料、橡胶制品 及加工、人造纤 维、油漆、农药、 化肥等排放有 毒气体的生产

综上分析,本项目复核《粮油仓储管理办法》(中华人民 共和国国家发展与改革委员会令第5号)中"关于污染源、危 险源安全距离的规定"要求,同时符合"在常规储存条件下, 粮油正常储存年限一般为小麦5年,稻谷和玉米3年,食用油 脂和豆类2年"的要求。

二、建设项目工程分析

一、项目组成

本项目建设地点位于吉林省长春市德惠市达家沟镇仲达街,具体地理坐标为 E125°49′3.03429″,N44°40′2.02850″,占地面积 2000m²,建设热风炉房一栋、烘干 塔一座,项目建成后,年烘干玉米量 2000t,湿玉米及干玉米不在厂区内贮存。本项目用地性质为工业用地。本项目厂界北侧为农田;西侧隔乡路为农田;厂界 东侧、南侧为达家沟镇居民。本项目建设内容组成详见下表。

表 2-1 项目建设内容组成一览表

			<u> </u>				
	工程类别	工程名称	工程内容及规模	备注			
	主体工程	烘干塔	建筑面积150m²	新建			
	# 44 〒 # 1	热风炉房 建筑面积200m²					
	辅助工程	办公室	建筑面积300m²	新建			
		燃料堆场	密闭堆场,地面进行硬化防渗处理,生物质致密成型燃料最大储存量20t,建筑面积100m ²	新建			
		灰渣场	密闭渣场,地面进行硬化防渗处理,建筑面积10m²	新建			
建		供水系统	项目用水来源为自打深水井	/			
设		供电系统	供电由市政电网提供				
内、	公用工程	排水系统	生活污水排入厂区内自建防渗旱厕定期清掏不外排。	/			
容		供热系统	冬季员工生活用热为电采暖;生产用热由新建1台生物质锅炉提供(规格为4t/h),年生物质成型燃料使用量150t/a;	/			
		废水治理	生活污水排入厂区自建防渗旱厕定期清掏不外排。	新建			
		废气治理	烘干炉烟气经布袋除尘器处理后经15m高排气筒排放;烘干粉尘经抑尘罩处理后随潮气由排潮口以无组织形式排放;粮食运输粉尘及燃料输送粉尘采用运输车辆加毡布覆盖、输送带密闭、与设备密闭连接等方式处理;	新建			
	环保工程	噪声治理	选择优质低噪声设备,对产噪设备设置隔声罩,并增加减振垫,以减少设备噪声对周围环境的影响。对于风机设备还需加设消声器等处理措施,加强设备的管理和维护。	新建			
		固废治理	生活垃圾、筛分杂质及霉变粮食交由环卫部门处理;热风炉布袋除尘器收集的粉尘以及锅炉产生的灰渣外售。	新建			

二、主要产品及产能

本项目为吉林省惠达粮米有限公司玉米烘干塔建设项目,本项目生产规模: 年烘干玉米 2000t,湿玉米及干玉米不在厂区内贮存。

三、主要生产单元及工艺

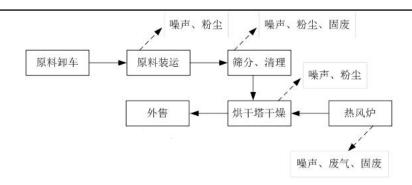


图 2-1 玉米烘干基本流程图

四、主要生产设施及设施参数

本项目主要使用设备详见下表。

表 2-2 主要设施一览表

		77	
	设备名称	单位	数量
_	烘干机部分	FHT-300	
	干燥机主机	4.6*3.33*25 米	1
1	减速机	ZQ200	1
	电机	Y90L-4/1.1	1
2	塔风机	RF11	6
3	料位器		1
	热风炉部分		
1	链条炉排	4t/h	1
2	砌体及钢架		1
3	换热器装置	360×10 ⁴ 千卡/时	1
4	鼓风机	RF13	1
三	附属设备		
1	提升机	50/28	1
2	护架	1*2*27 米	1
3	初清筛		1
4	除渣机		1
5	燃料输送机		1
6	烘干机电控系统	DK300	1
		合计	20

五、主要原辅材料及燃料的种类和用量

本项目营运期主要原辅材料及能源消耗详见下表。

表 2-3 主要原辅材料一览表

<u>序号</u>	<u>名称</u>	<u>单位</u>	<u>用量</u>	<u>来源</u>
<u>1</u>	<u>原粮(玉米)</u>	<u>t/a</u>	<u>2000</u>	<u>外购(含水率 25%)</u>
<u>2</u>	生物质致密成型燃料	<u>t/a</u>	<u>150</u>	外购,暂存于密闭燃料堆场 内。

注:本厂收购原粮含水率约为25%,本厂烘干后成品粮含水率约为15%。

表 2-4 生物质致密成型燃料成分一览表 单位: %

序号	项目名称	单位	数值
1	全水分 Mar	%	25
2	水分 Mad	%	2.54
3	灰分 A _{ad}	%	3.07
4	挥发分 Vad	%	76.78
5	固定碳 FCad	%	17.61
6	弹筒热值 Qb, ad	MJ/kg	18.26
7	高位热值 Qgr, ad	MJ/kg	18.23
8	低位热值 Qnet, ar	MJ/kg	13.45
9	碳 C _{ad}	%	48.41
10	氢 H _{ad}	%	5.67
11	氮 N _{ad}	%	0.05
12	氧 O _{ad}	%	40.19
13	硫 S _{t, ad}	%	0.03
14	变形温度 DT	℃	104×10
15	软化温度 ST	℃	108×10
16	半球温度 HT	$^{\circ}\mathbb{C}$	110×10
17	流动温度 FT	$^{\circ}\mathbb{C}$	115×10

注:环评编制阶段为非生产期,暂未确定生物质燃料来源,各种成分参考本地一般生物质致密成型燃料成分确定。

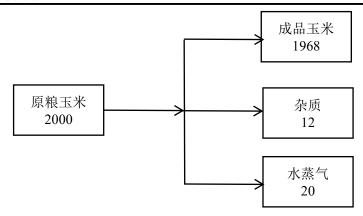


图 2-1 物料平衡图 (t/a)

六、公用工程

1、给排水

本项目主要用水为职工生活用水,不设置淋浴,项目运营不产生工业废水。本项目劳动定员5人,生活用水量按0.03t/d•人计,则员工生活用水量为18t/a,生活污水产生量按其用水量的80%计算,则其产生量为14.4t/a。本项目用水来源为自打井水,可满足本项目生产用水的需要。

2、供电系统

本项目接市政电网,能满足用电负荷。

3、供热、供冷系统

本项目冬季员工生活用热为电加热;生产用热新建1台生物质热风炉用于玉米烘干,规格4t/h。

6、食堂

项目厂区内不设食堂, 员工自行解决就餐。

七、劳动定员及工作制度

本项目劳动定员5人,年工作120天,3班制,每班8h。本项目每年的生产 日期为10月-次年1月。

八、厂区平面布置

项目烘干塔设置在厂区东北角,距离厂区大门较近,远离员工办公区,本项目的总平面布置根据厂址的自然条件和工程的生产性质,在符合《工业企业总平面设计规范》、《建筑设计防火规范》等相关设计规范的前提下,满足生产工艺流程,满足安全、卫生、经济及环境保护等为原则,充分利用地形及现状,节约用地,并考虑到发展的可能性,合理进行本项目的平面布置。

九、项目实施进度

2025年4月开工,2025年10月投入生产。

图2-3 施工期工艺流程及产污节点图

建筑垃圾、弃土、施工废水

二、营运期工艺流程

生态影响

一、施工期工艺流程

工艺流程及产污环节具体详见下图。

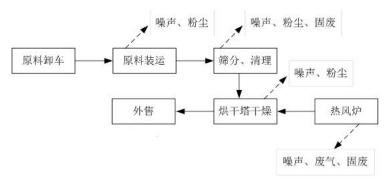


图 2-4 粮食烘干工艺流程及产污环节图

玉米由卡车运输进厂,卸料于厂区内,企业首先对收购玉米进行检验,主要检查玉米的霉变率和含水率,检测出霉变的玉米为杂质(固体废物)处理,通过密闭筛分,筛分出土、秸秆杂物、碎屑等杂质后,湿粮(玉米)经过塔前提升机连续下泄到密闭传送带输粮机上,由传送带输送机输送到提升机底部,由提升机将湿粮送入烘干塔上部,同时通过热风炉后加热窑加热的热气采用正压双管送风分别打入烘干塔上部和中部,入塔湿粮自上而下被热风加温烘干,在烘干塔最下部由鼓风机吹入的冷空气将高温玉米吹凉,此时烘干的玉米水份已达到标准水份,干玉米出塔并由卡车密闭运输送出厂区,不在厂区内仓储。

本项目为新建项目。本项目厂界北侧为农田; 西侧隔乡路为农田; 厂界东侧、 南侧为达家沟镇居民。

吉林省惠达粮米有限公司在项目厂界内北侧设有稻米加工车间(详见附图), 该车间目前已建成运营,年加工大米5000t,生产工艺不含发酵工艺,根据《建 设项目环境影响评价分类管理名录(2021 年版)》,此部分工程无需编制环境影响 评价文件。

本项目无现存环境污染问题。

三、区域环境质量现状、环境保护目标及评价标准

一、地表水环境质量现状监测与评价

根据《环境影响评价技术导则地表水环境》(HJ2.3-2018),水环境质量现状调查,应优先采用国务院生态环境主管部门统一发布的水环境状况信息。饮马河长春市江段共有3个国控断面,分别为饮马河大桥、刘珍屯断面和靠山南楼断面,根据吉林省生态环境厅发布的2024年11月吉林省地表水国控断面水质月报,水质情况详见下表。

表 13 饮马河长春市江段国控断面水质月报(2024年11月)

城市	河流	断面		水质类别			同比
			本月	上月	去年同期		
长春	饮马河	饮马河大桥	II	III	II	†	→
		刘珍屯	V	III	V	↓ ↓	→
		靠山南楼	IV	V	IV	†	→

注: "/"表示没有监测。"↑"水质有所好转,"↑↑"水质明显好转,"→"水质类别没有变化,"↓"水质有所下降,"↓↓"水质明显下降,"○"没有数据无法比较。

上表说明饮马河长春市江段共有 2024 年 11 月 3 个国控断面中,饮马河大桥、靠山南楼两个断面均能达标,刘珍屯断面不能达标(分析原因可能为枯水期生态流量较小,污染物消减能力较差),为从根本上改善长春市水环境质量,长春市人民政府已制定了《关于印发长春市空气、水环境、土壤环境质量巩固提升三个行动方案的通知》(长府办发〔2021〕14 号,2021 年 5 月 8 日)、《长春市劣五类水体治理和水质巩固提升实施方案》等文件,推动水质稳定巩固、稳步改善、稳中提升。

二、环境空气质量现状监测与评价

(1) 区域质量达标情况

根据《环境影响评价技术导则 大气环境》(HJ2.2-2018),"项目所在区域达标判定,优先采用国家或地方生态环境主管部门公开发布的评价基准年环境质量公告或环境质量报告中的数据或结论",本次评价采用长春市环境质量状况进行评价。根据吉林省生态环境厅发布的 2023 年空气环境质量状况,区域空气质量现状评价详见下表。

表 3-2 长春市空气质量现状评价表(2023年)

城市名和	尔 SO ₂ (μg/m³)	NO_2 (μ g/m ³)	CO-95per (mg/m³)	0_{3-8h} -90per $(\mu g/m^3)$	PM ₁₀ (μg/m ³)	PM _{2.5} (μg/m ³)	优良天数比例 (%)	综合指数
长春市	9	29	0. 9	132	53	32	89. 3	3. 58
吉林市	9	23	1.1	139	52	32	91. 2	3. 53
四平市	7	24	0. 9	150	54	31	87. 7	3. 54
辽源市	12	22	1.2	150	46	30	88. 8	3. 51
通化市	14	24	1. 2	131	41	22	98. 1	3. 17
白山市	12	22	1.3	130	58	24	96. 7	3. 40
松原市	6	18	0.8	126	45	30	90. 1	3. 04
白城市	6	15	0.7	124	41	20	96. 4	2. 60
延边州	10	17	0. 9	113	35	19	99. 2	2. 56

长春市 2023 年 SO_2 、 NO_2 、 PM_{10} 、 $PM_{2.5}$ 年均浓度分别为 $9ug/m^3$ 、 $29ug/m^3$ 、 $53ug/m^3$ 、 $32ug/m^3$; CO 24 小时平均第 95 百分位数为 $0.9mg/m^3$, 0_3 日最大 8 小时平均第 90 百分位数为 132 ug/m^3 ; 各项指标均满足《环境空气质量标准》(GB3095-2012)中二级标准限值,为达标区。

(2) 特征污染物

(1) 监测点位

根据本项目建设位置、气象条件、及评价等级,在评价区域内布设2个特征 污染物监测点位。布置位置详见下表及附图3。

监测点坐标 相对厂址 相对厂界 监测因 监测点名称 监测时段 子 方位 距离/m X Y / 项目所在地 125.8174 44.6672 SO_2 2025.1.20-2025.1.26, 项目所在地 NOx, 连续7天 东北 1.5km 1000 125.8257 44.6801 东北侧 **TSP** 处

表 3-3 特征污染物补充监测点位基本信息

(2) 监测项目

根据项目生产工艺,特征污染物监测项目为 SO₂、NOx、TSP。

(3) 监测时间

监测时间: 2025年1月20日-2025年1月26日,连续7天。

(4) 评价方法

利用占标率法进行评价区环境空气质量的现状评价, 计算公式如下:

$$P_i = \frac{C_i}{C_{0i}} \times 100\%$$

式中: Pi——第 i 个污染物的最大地面质量浓度占标率, %;

C:——采用估算模式计算出的第 i 个污染物的最大地面质量浓度,

 mg/m^3 ;

 C_{0i} 一第 i 个污染物的环境空气质量浓度标准, mg/m^3 。

(5) 评价标准

《环境影响评价技术导则 大气环境》(HJ2.2-2018)。

(6) 评价结果及分析

特征污染物评价结果详见下表。

监测点坐标 监测浓度 监测点 评价标准/ 最大浓度 超标 达标 平均时间 污染物 范围 占标率/% 率/% 情况 名称 X Y $(\mu g/m^3)$ $(\mu g/m^3)$ 达标 30-39 250 15.6 0 1h NOx 日均值 100 32-36 36 0 达标 1#项目 500 达标 125.8174 | 44.6672 1h 30-39 7.8 0 所在地 SO_2 日均值 达标 150 32-36 24 0 **TSP** 日均值 300 89-99 33 0 达标 250 30-39 15.6 达标 1h 0 2#项目 NOx 日均值 100 28-32 32 0 达标 所在地 125.8257 达标 44.6801 1h 500 20-38 7.6 东北 SO_2 日均值 150 22-36 24 0 达标 1.5km处 日均值 达标 **TSP** 300 84-92 30.7 0

表 3-4 特征污染物环境质量现状(监测结果)表

根据上表可以看出,各监测点环境空气的标准指数均小于 1,由此可见,拟 建项目所在地环境空气质量能满足二级标准要求。

三、声环境质量现状监测与评价

(1)监测点位

本项目在厂界四周布设4个噪声监测点,噪声监测点布设见附图3。

(2)监测时间

2025年1月20日。

(3)监测方法

监测仪器: AWA6228型号多功能声级计。

监测方法:噪声监测执行《声环境质量标准》(GB3096-2008)中规定的测量方法。

噪声监测结果见下表。

表 3-5 声环境质量现状测量结果

监测点位	昼间dB(A)	标准限值	夜间dB(A)	标准限值
1#厂界东侧外1m处	54	55	43	45
2#厂界南侧外1m处	53	55	42	45
3#厂界西侧外1m处	52	55	40	45
4#厂界北侧外1m处	53	55	41	45
<u>5#厂界东侧外居民</u>	<u>51</u>	<u>55</u>	<u>41</u>	<u>45</u>
<u>6#厂界南侧外居民</u>	<u>50</u>	<u>55</u>	<u>40</u>	<u>45</u>
7#厂界西南侧外居民	<u>50</u>	<u>55</u>	<u>41</u>	<u>45</u>

由上表可见,本项目四周厂界及敏感点处昼间、夜间声环境质量均满足《声 环境质量标准》(GB3096-2008)中"1类"标准要求,评价区内声环境质量较好。

四、土壤环境质量现状监测与评价

根据《环境影响评价技术导则-土壤环境(试行)》(HJ964-2018)本项目为IV 类项目,可不开展土壤环境影响评价。

五、地下水环境质量现状监测与评价

根据《环境影响评价技术导则-地下水环境》(HJ610-2016)中的"地下水环境影响评价行业分类表",本项目属于"N轻工-94、粮食及饲料加工-其他",地下水环境影响评价项目类别均为IV类,可不开展地下水环境影响评价。

本项目厂界北侧为农田; 西侧隔乡路为农田; 厂界东侧、南侧为达家沟镇居民。厂界外 500 米范围内不存在地下水集中式饮用水水源和热水、矿泉水、温泉等等特殊地下水资源。项目周围环境保护目标详见下表。

表 3-6 项目环境保护目标

		12.5-0	**	1 ~1 ・クセ レトル	איי			
	坐标	K/m	保	规模		相	<u>相</u>	<u>相</u>
序 号	X	Y	床 护 对 象	グ (対 人 数)	环境功能区	对厂址:	<u>对</u>	<i>对</i> 发 王
			-			万	距	<u>塔</u>

环境保护目

标

准

						位	<u>离</u> / <u>m</u>	<u>距</u> <u>离</u> / <u>m</u>
1	125.817910131	44.667019169 °	达家沟镇居民	221/67	《环境空气质 量标准》 (GB3095-2012)中二类区	东、南	<u>5</u>	<u>20</u>
2			饮马河		《地表水环境 质量标准》 (GB3838-2002) IV类标准	西	<u>490</u> <u>0</u>	<u>488</u> <u>5</u>
3	125.817910131 °	44.667019169 °	厂界外50米(达家沟镇居民)	14/45		2		2008)

______ 一、废水

本项目生活污水排入厂区内自建防渗旱厕,定期清掏,不外排。

二、废气

根据《关于部分重点城市新建项目执行大气污染物特别排放限值的公告》(吉 林省生态环境厅公告 2019 年 第 1 号),本项目大气污染物执行排放标准详见下 表。

表 3-7 烟气污染物排放标准一览表

	评价因子		标准值	来源					
大 畑		颗粒物	≤200mg/m ³	《工业炉窑大气污染物排放标准》					
有组 织排	人 热风炉	SO_2	$\leq 850 \text{mg/m}^3$	(GB9078-1996) 表 2 及表 4					
放	7X\/\(\)\/\ 	NOx	<240m ~/m3	《大气污染物综合排放标准》					
		NOX	≤240mg/m³	(GB16297-1996) 表 2 限值要求					
 无组	有车间	 烟尘	$\leq 5 \text{mg/m}^3$	《工业炉窑大气污染物排放标准》					
り	厂房	刈土	≥Smg/m²	(GB9078-1996) 表 3					
放	电台 本分	· Abn	$\leq 1.0 \text{mg/m}^3$	《大气污染物综合排放标准》					
	颗粒物			(GB16297-1996)表 2 限值要求					

三、噪声

本项目施工期噪声执行《建筑施工场界环境噪声排放标准》(GB12523-2011)。

表 3-8 建筑施工场界环境噪声排放标准 单位: dB(A)

	夜间
70	55

本项目运营期厂界四周噪声值执行《工业企业厂界环境噪声排放标准》 (GB12348-2008) 中 1 类标准值, 详见下表。

表 3-9 工业企业厂界环境噪声排放标准 单位: dB(A)

**************************************	环境噪声标准值		
(大)	昼间	夜间	
1 类	55	45	

四、固体废弃物

项目一般固体废物执行《中华人民共和国固体废物污染环境防治法》和《一 般工业固体废物贮存和填埋污染控制标准》(GB18599-2020)。

根据吉林省生态环境厅《关于进一步明确建设项目主要污染物排放总量审核 有关事宜的复函》,按照行业排污绩效,将建设项目污染物排放总量分为重点行 业排放管理、一般行业排放管理和其他行业排放管理三类管理方式。

执行重点行业排放管理的建设项目包括石化、煤化工、燃煤发电、钢铁、有 色金属冶炼、建材、造纸制浆、印染、集中供热等行业含有按照《排污许可证申 请与核发技术规范》确定的主要排放口的涉及新增污染物排放的建设项目。

执行一般行业排放管理的建设项目包括除重点行业外、含有按照《排污许可 证申请与核发技术规范》确定的主要排放口的涉及新增污染物排放的建设项目。

实施总量审核管理的主要污染物包括: 大气主要污染物是指挥发性有机物 (VOCs)、氮氧化物(NOx)、二氧化硫(SO2)、烟尘,水主要污染物是指化学需 氧量(COD)、氨氮(NH,-N)。

根据吉林省生态环境厅《关于进一步明确建设项目主要污染物排放总量审核 有关事宜的复函》,一般行业建设项目应按照《环境影响评价技术导则污染源源 强核算技术指南》或《排污许可证申请与核发技术规范》测算新增污染物排放量, 无需编制削减替代方案和提供减量替代污染源。在环评审批过程中,仅对测算的 新增排放量进行审核。在新增污染物排放事中事后管理中,将其纳入排污许可证 进行监管。

本项目新建1台生物质热风炉(规格为4t/h),烟气通过1根15m排气筒排
放,该排放口为一般排放口,新增污染物排放量为烟尘: $0.004t/a$; SO_2 : $0.071t/a$;
NO 0.1574/
NOx: $0.157t/a_{\circ}$

施期境护施

四、主要环境影响和保护措施

一、废气

本工程新建烘干塔的施工期对环境空气产生的影响主要是来自施工扬 尘、运输汽车尾气和施工设备废气。工程施工主要影响是扬尘影响。扬尘是 建设期的主要大气污染源,主要有风力扬尘和动力扬尘。其中风力扬尘主要 是由于露天堆放的建材及裸露的施工区表层浮尘由于天气干燥及大风,产生 风力扬尘;动力扬尘主要是建材装卸等过程中由于外力而产生的尘粒再悬浮 而造成,其中施工及装卸车辆造成的扬尘最为严重。

1、露天堆场和裸露场地的风力扬尘

环评要求建设方在施工过程中作业场地采取围挡、围护以减少扬尘扩散,围挡、围护对减少扬尘对环境的污染有明显作用,当风速为 2.5m/s 时可使影响距离缩短 40%。这样可大大减少施工扬尘对周围环境的影响。

2、车辆行驶的动力起尘

环评要求施工单位要配备一定数量的洒水车,在施工场地安排员工定期对未铺筑的临时道路进行洒水处理,以减少扬尘量。本环评还要求对物料运输与使用进行管理,合理装卸、规范操作。运输建筑材料和清运施工渣土等建筑垃圾应用专用车辆,加盖蓬布减少洒落。同时,限制车速,车辆进出、装卸场地时应用水将轮胎冲洗干净,不得带渣出场。同时,在施工过程中禁止焚烧废弃物,采用商品混凝土,不在现场进行混凝土搅拌,减轻施工场地粉尘污染。

综上所述,施工期各类扬尘影响范围一般集中在下风向 100m 范围内,本工程只要加强管理、切实落实好这些措施,施工场地扬尘对环境的影响将会大大降低,同时其对环境的影响也将随施工的结束而消失。

二、噪声

施工期间,噪声及振动主要产生于施工机械的作业,如设备安装及运输工具的交通噪声。施工中常用的施工机械有:振冲碎石桩的打桩机、挖土机、

推土机、压路机、自卸车、运土汽车、以及烘干塔调试时的对空排气、冲管等,多为瞬间噪声;施工车辆的噪声属于交通噪声。

本项目施工噪声影响范围内虽无环境敏感点,但项目施工期应选用低噪声施工设备,加设隔声罩、消声器和振动部件进行减震处理,对动力机械设备应进行定期维修、养护,并在施工区四周设置围墙用作隔声屏障,采取以上措施后可降低10~15dB(A),同时施工期应合理安排施工时间,尽量避免高噪声设备同时运行,在夜间10点到次日早上6点禁止施工,如确因工程施工需要,需向生态环境主管部门申请夜间施工许可,批准后方可施工,并告知附近居民,尽量做到施工建设时噪声对影响区公众的不利影响降至最小,另外,施工过程中业主应充分协调好关系,确保不发生环境纠纷。

施工噪声具有阶段性、临时性和不固定性,随着施工阶段的不同,施工噪声影响也不同,施工结束时,施工噪声也自行结束。

三、废水

施工期主要是施工废水和生活污水,施工废水主要含有较高的悬浮物和少量油污,若直接排入水体,会造成局部区域悬浮物浓度过高;生活污水主要含有氨氮、COD、BOD。施工场地开挖裸露面在雨水的冲刷下形成的地表径流中 SS 浓度很高,若不采取必要的措施,施工废水将对环境造成很大的影响。

针对施工期废水应采取以下措施来控制:施工人员生活污水排入场区现有防渗旱厕;施工过程无生产废水产生。本项目废水对地表水环境影响小。

四、固体废物

1、建筑垃圾

本工程进入施工阶段要产生少量的建筑垃圾,主要是一些废弃的砖瓦沙石、水泥以及装修废弃物等,及时将建筑废弃物堆放至指定地点。

2、生活垃圾

本项目生活垃圾清运至指定垃圾堆放点,由环卫部门清运集中处理,在 采取上述措施后对环境影响小。

运期境响保措营环影和护施

一、废水

1、污染物产生量核算

本项目运营期废水主要为员工的生活废水,排入厂区自建防渗旱厕,定 期清掏,不外排,详情见下表。

表 4-1 废水污染物产生与排放情况一览表

废水排放 源	产生量(t/a)	污染物	污染物产生浓度 (mg/L)	污染物产生量(t/a)
生活废水	14.4	COD BOD₅ SS 氨氮	300 150 180 30	0.0043 0.0022 0.0026 0.0004

2、监测要求

根据《排污许可证申请与核发技术规范 工业炉窑》HJ1121-2020,未对本项目生活污水污水监测点位、监测指标和最低监测频次做要求。

二、废气

1、污染物产排核算

_(1) 筛分粉尘

本项目为防止筛分粉尘外泄,减少粉尘累积,选择密闭性良好的设备,筛分机采用密闭输送,降低落差,设置抑尘罩装置等措施进行处理。抑尘罩处理效率按90%计算,则粉尘的排放量为0.0002t/a,排放速率为0.00042kg/h,到厂界外排放浓度小于1mg/m³,能够满足《大气污染物综合排放标准》 (GB16297-1996)中无组织排放监控浓度限值要求。

(2) 粮食输送粉尘

本项目运营后粮食在输送过程中会产生粉尘,一部分为粮食由货车运输过程中产生的粉尘,一部分为粮食筛选后运输至提升机产生的运输粉尘,一部分指的是粮食在输送机输送过程中产生的粉尘。

由于粮食由货车运输时均采用苫布覆盖,且粮食含水率较高,筛选后由

铲车运输,故该两种运输过程中产生的粉尘较小,只要企业在运输中加强规 范操作,此过程产生的粉尘对周围大气环境影响较小。

本项目粮食输送方式为密闭输送带,故该过程产生的粉尘量较小,几乎 不会逸散至大气环境中,对环境影响较小。

(3) 燃料运输、储存粉尘

本项目运营后燃料在运输过程、储存过程中会产生粉尘,一部分为生物 质颗粒由货车运输过程中产生的粉尘,一部分为生物质颗粒在场内储存过程 过程中产生的粉尘。

由于燃料生物质颗粒由货车运输及在场内储存时均采用苫布覆盖,故运输过程及储存过程中产生的粉尘较小,在场内由铲车运输,只要企业在运输中加强规范操作,此过程产生的粉尘对周围大气环境影响较小。

(4) 烘干粉尘

本项目建成后,年烘干量2000吨,烘干塔烘干玉米过程会从潮口排放水蒸气,会有少量玉米杂质带出,主要污染物为TSP。

项目烘干的玉米杂质很少,约占0.1%,进入烘干塔内烘干过程随水蒸气带出的粉尘量约占10%,大部分进入干玉米,经计算无组织产生的粉尘量为0.02t/a,产生速率约为0.010kg/h。

本次环评建议企业在对烘干塔排潮气口采用抑尘罩,产生的工艺粉尘经抑尘罩处理完成后随着潮气排出,抑尘罩处理效率按90%计算,则粉尘的排放量为0.002t/a,排放速率为0.0010kg/h,到厂界外排放浓度小于1mg/m³,能够满足《大气污染物综合排放标准》(GB16297-1996)中无组织排放监控浓度限值要求。

(5) 热风炉烟气

本项目新建1台生物质热风炉用于玉米烘干,规格为4t/h,使用生物质燃料150t/a,烟气通过1根15m排气筒排放。由于热风炉没有行业污染物源强核算技术指南,依据《污染源源强核算技术指南 准则》(HJ884-2018),本项目颗粒物、二氧化硫、氮氧化物采用产污系数法进行源强核算,工业废气

量、烟尘、二氧化硫、氮氧化物参照《排放源统计调查产排污核算方法和系数手册》(生态环境部公告 2021 年第 24 号)——4430 工业锅炉(热力供应)行业系数手册产污系数进行源强计算。

参照《排放源统计调查产排污核算方法和系数手册》(生态环境部公告 2021 年第 24 号),产排污系数详见下表。

表 4-2 工业锅炉产污系数表

					• •	
产品名称	原料 名称	工艺 名称	规模等级	污染物指标	单位	产污系数
	4- #/m			工业废气量	标立方米/吨-原	6240
蒸汽/热 水/其它	生物质燃	层燃	所有规模	烟尘	千克/吨-原料	0.5
	料料炉	炉		二氧化硫	千克/吨-原料	17S
				氮氧化物	千克/吨-原料	1.02

注: 本项目含硫率 0.03%, 即: S=0.03。

则本项目热风炉烟气产生及排放情况详见下表。

表 4-3 热风炉烟气污染物产生情况一览表

污染物	Ŋ	项目		计算结果	 达 	示分析
烟气	基准	烟气量	Nm³/a	9.43×10 ⁵	-	-
	产生情况	产生浓度	mg/m ³	75	-	-
50	广土旧死	产生量	t/a	0.071	-	-
SO_2	排放情况	排放浓度	mg/m ³	75	850	达标
		排放量	t/a	0.071	-	-
	产生情况	产生浓度	mg/m ³	80.3	-	-
颗粒物		产生量	t/a	0.076	-	-
	排放情况	排放浓度	mg/m ³	4.6	200	达标
		排放量	t/a	0.004	-	达标
	产生情况	产生浓度	mg/m ³	166.7	-	-
NO _x) 工用机	产生量	t/a	0.157	-	-
INOx	排放情况	排放浓度	mg/m ³	166.7	240	达标
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	排放量	t/a	0.157	-	-

本项目安装布袋除尘器对热风炉烟气中的烟尘进行处理,除尘效率为95%。经此处理后,热风炉烟气经15m高烟囱排放,烟气中烟尘、二氧化硫满足《工业窑炉大气污染物排放标准》(GB9078-1996)中二级标准,氮氧化物满足《大气污染物综合排放标准》(GB16297-1996)中相应要求。

本项目废气主要产生、排放情况详见下表。

表 4-4 废气污染物产排情况一览表

污染源	污染物名称	产生量及产生浓度	排放量及排放浓度
粮食筛分	筛分粉尘	0.005t/a	0.0005t/a, 0.00042kg/h
粮食输送 玉米烘干	粮食输送粉尘	少量	少量
	烘干粉尘	0.02t/a	0.002t/a, 0.0010kg/h
	颗粒物	$0.076t/a$, $80.3mg/m^3$	$0.004t/a$, $4.6mg/m^3$
热风炉烟气	二氧化硫	$0.071t/a$, $75mg/m^3$	$0.071t/a$, $75mg/m^3$
	氮氧化物	$0.157t/a$, $166.7mg/m^3$	$0.157t/a$, $166.7mg/m^3$
	烟气黑度	1级	1 级

2、治理措施

(1) 布袋除尘器处理措施分析:

本项目采用布袋除尘器对热风炉产生的烟尘进行处理,含尘气流由除尘器下部进入布袋,在通过布袋滤料的空隙时,粉尘被捕集于滤料上,透过滤料的清洁气体由上部排出。沉积在滤料上的粉尘可以在机械振动的作用下,从滤料表面脱落落入灰斗中,定期排出。布袋除尘器是最古老的除尘方法之一,设备正常工作时,含尘气体由风口进入灰斗,一部分较粗的尘粒由于惯性碰撞和自然沉降等原因落入灰斗,其余大部分尘粒随气流上升进入袋室,经滤袋过滤后,尘粒被滞留在滤袋外侧,净化后的气体由滤袋内部进入上箱体,再由阀板孔、排风口排入大气,从而达到除尘目的。除尘效率可达 95%以上。最小捕集粒径<0.1 μm,由于其效率高、性能稳定、密闭性能好、清灰效果好、维修管理方便、操作简单,而获得越来越广泛的应用。

热风炉烟气采用除尘效率为95%的布袋除尘器处理后,烟气处理达标后经15m高排气筒高空排放,烟气中烟尘、二氧化硫的排放浓度满足《工业窑炉大气污染物排放标准》(GB9078-1996)中二级标准,氮氧化物排放浓度满足《大气污染物综合排放标准》(GB16297-1996)中相应要求。

烟筒高度可行性:根据《工业窑炉大气污染物排放标准》(GB9078-1996)中的要求:烟囱高度不低于15m,锅炉烟气的具体高度按批复的环境影响评价文件确定。本项目周围200m范围内最高建筑物3m,因此本项目锅炉烟囱高度15m满足标准要求。

(2) 烘干塔排潮气口抑尘罩处理措施分析:

本项目使用的抑尘罩是一种将排潮气口局部密闭的罩子。其作用原理为

使粉尘的扩散限制在一个很小的密闭空间内,并通过从罩内排出一定量的空气,使罩内保持一定的负压,让罩外的空气经罩上的孔口或缝隙流入罩内以达到防尘外溢的目的。与其他类型吸尘罩相比,抑尘罩所需风量最小,控制效果最好且不受横向气流干扰。

3、排放口基本情况

表 4-5 大气排放口基本情况表

				排放口地理	里坐标		排	
序号	排放 口编 号	排放口名称	污染物种类	经度	纬度	排气筒高度	气筒出口内径	排气温度
1	DA00 1	热风炉 排气筒	颗粒物、SO ₂ 、 NOx、烟气黑度	125° 49′ 3.80562″	44° 40′ 2.35819″	15	0.5	50 ℃

4、监测要求

根据《排污许可证申请与核发技术规范 工业炉窑》HJ1121-2020,对工业炉窑排污单位废气污染物监测点位、监测指标和最低监测频次要求详见下表。

表 4-6 废气监测点位、监测指标和最低监测频次

项目	监测点位	监测指标	最低监测频次
	厂界	颗粒物	一次/半年
	露天(或有顶 围墙)	颗粒物	一次/半年
大气 环境	有车间厂房	颗粒物	一次/半年
		颗粒物、二氧化硫、氮氧化 物	一次/年
	热风炉排气筒	烟气黑度、氟及其化合物、 铅、汞、铍及其化合物、沥 青油烟	一次/年

三、噪声

1、声源源强

本项目产生噪声设备主要来自于输送机、鼓风机、引风机等各种机械设备,噪声值在60-90dB(A)之间。本项目主要设备噪声源强统计见下表。

表 4-7 主要设备噪声源强

	<u>序号</u>	<u>设备名称</u>	<u>数量(台)</u>	<u>噪声值(dB(A))</u>
--	-----------	-------------	--------------	-------------------

<u></u>	<u>干燥机主机</u>	<u>1</u>	<u>65-75</u>
<u>2</u>	<u>减速机</u>	<u>1</u>	<u>85-90</u>
<u>3</u>	<u> 塔风机</u>	<u>6</u>	<u>65-85</u>
<u>4</u>	热风炉	<u>1</u>	<u>60-80</u>
<u>5</u>	<u>鼓风机</u>	<u>1</u>	<u>70-90</u>
<u>6</u>	<u>提升机</u>	<u>1</u>	<u>85-90</u>
<u>7</u>	<u>除渣机</u>	<u>1</u>	<u>70-90</u>
<u>8</u>	燃料输送机	<u>1</u>	<u>85-90</u>

2、噪声预测与评价

预测模式采用《环境影响评价技术导则声环境》(HJ2.4-2021)中推荐的模型。预测计算中考虑主要噪声源采取的污染防治措施、所在厂房围护效应和声源至受声点的距离衰减等主要衰减因子。根据经验估算,在采用选用低噪声设备、安装减震装置、隔声罩、厂房隔声等减震措施后,降噪效果一般在 25~35dB(A)间,本项目取 30dB(A)做为实际降噪量。

项目场界噪声达标情况以贡献值进行评价噪声预测结果详见下表:

表 4-8 项目噪声源强估算参数表

<u>农 7-0 次日朱广冰四日并多效农</u>							
<u>序</u> 号	<u>设备名</u> <u>称</u>	<u>単台声</u> 级	<u>数量/</u> 台	<u>治理措施</u>	<u>采取措施后叠加</u> 值 dB (A)	<u>位置</u>	<u>距离厂界距</u> <u>离</u> /m
<u>1</u>	<u>于燥机</u> <u>主机</u>	<u>65-75</u>	<u>1</u>	减震垫+ 建筑隔声	<u>55</u>	<u>室外</u>	东: 28 南: 57 西: 92 北: 13
<u>2</u>	<u>減速机</u>	<u>85-90</u>	<u>1</u>	<u>减震垫+</u> 建筑隔声	<u>65</u>	<u>烘干塔</u>	<u>东: 30</u> <u>南: 55</u> <u>西: 90</u> 北: 15
<u>3</u>	<u> 塔风机</u>	<u>65-85</u>	<u>6</u>	<u>减震垫+</u> 建筑隔声	<u>60</u>	<u>烘干塔</u>	<u>东: 30</u> <u>南: 55</u> <u>西: 90</u> 北: 15
<u>4</u>	热风炉	<u>60-80</u>	<u>1</u>	<u> 减震垫+</u> 建筑隔声	<u>70</u>	<u>热风炉房</u> 室内	<u>东: 30</u> <u>南: 67</u> <u>西: 90</u> <u>北: 3</u>
<u>5</u>	鼓风机	<u>70-90</u>	<u>1</u>	<u> </u>	<u>65</u>	<u>热风炉房</u> 室内	<u>东: 30</u> <u>南: 67</u> <u>西: 90</u> <u>北: 3</u>
<u>6</u>	<u>提升机</u>	<u>85-90</u>	<u>1</u>	<u>减震垫+</u>	<u>70</u>	<u>热风炉房</u>	<u>东: 30</u>

				建筑隔声		<u>室内</u>	<u>南: 67</u>
							<u>西: 90</u>
							<u>北: 3</u>
<u>7</u>	除渣机	<u>70-90</u>	<u>1</u>	<u>减震垫+</u> 建筑隔声	<u>65</u>	<u>热风炉房</u> <u>室内</u>	<u>东: 30</u> <u>南: 67</u> <u>西: 90</u> <u>北: 3</u>
<u>8</u>	<u>燃料输</u> <u>送机</u>	<u>85-90</u>	<u>1</u>	<u>减震垫+</u> 建筑隔声	<u>75</u>	<u>热风炉房</u> 室内	<u>东: 30</u> <u>南: 67</u> <u>西: 90</u> 北: 3

根据拟建项目对声环境产生影响的主要设备噪声源噪声辐射和结构特点,安装位置的环境条件以及噪声源至预测点的距离等因素,本项目将室内噪声源划分为点声源。室内噪声影响预测选用《环境影响评价技术导则•声环境》(HJ2.4-2021)中推荐的室内声源等效室外声源计算模式。

计算某个室内声源在靠近围护结构处产生的 A 声级:

$$\underline{L}_{p1} \equiv \underline{L}_w + 10lg \left(\frac{Q}{4\pi r^2} \pm \frac{4}{R} \right)$$

式中: L_{pl} ——靠近开口处(或窗户) \overline{z} 内某倍频带的声压级或A声级,

dB;

Lw——点声源声功率级(A 记权或倍频带),dB;

r——室内某个声源到靠近围护结构某点处的距离,m;

R——房间常数; R=S α /(I- α), S 为房间内表面面积, m^2 ; α 为平均吸声系数;

Q——指向性因数,通常对无指向性声源,当声源放在房间中心时,Q=1,当放在一面墙的中心时,Q=2;当放在两面墙夹角处时,Q=4,当放在三面墙夹角处时,Q=8;。

计算室外靠近围护结构处的A 声级:

 $\underline{L}_{p2i}(\underline{T}) \equiv \underline{L}_{p1i}(\underline{T}) - (\underline{T}\underline{L}_i + \underline{6})$

<u>噪声预测结果详见下表。</u>

表 4-11 项目厂界噪声及环境敏感点影响预测结果 单位: dB(A)

序号	预测位置	距离 (m)	贡献值	<u>评价标准</u>		评价结果
<u> 77 5</u>	<u> </u>	<u> 迎呂(m)</u>	<u> </u>	<u>昼间</u>	<u>夜间</u>	
<u>1</u>	<u>北厂界</u>	<u>15m</u>	<u>54.8</u>	5.5	15	昼间达标
<u>2</u>	<u>东厂界</u>	<u>30m</u>	<u>43.4</u>	<u> </u>	45	<u>(夜间不</u>

<u>3</u>	<u>南厂界</u>	<u>55m</u>	<u>39.4</u>
4	西厂界	90m	35.8

预测结果表明,项目产噪设备经减振及隔声等措施处理后对边界噪声贡献值较小,可满足《工业企业厂界环境噪声排放标准》(GB12348-2008)1类标准。

3、治理措施及达标情况

本项目的噪声主要为设备及风机运行时产生的噪声,本环评要求噪声污染防治措施如下:

- (1) 选购低噪声的先进设备,从源头上控制高噪声的产生。
- (2)对于噪声相对较大的设备安装减震垫。设置产噪设备的建构筑物要选用隔声及消声性能较好的建筑材料,在网上了解相关吸声建筑材料,并且购买,操作室采用封闭结构或设隔声操作间,工作人员配备消音设备,以减轻噪声对操作人员的危害和对环境的影响。
- (3)在设计中要做到合理布局,充分利用厂内建筑物的隔声作用,使产 噪设备对周围环境的影响减轻。
- (4)加强对高噪声设备的管理和维护。随着使用年限的增加,有些设备噪声可能有所增加,故应在有关环保人员的统一管理下,定期检查、监测,发现噪声超标要及时治理并增加相关操作岗位工人的个体防护。
- (5)本项目厂界外东侧、南侧有居民分布,本工程主要产噪声源设置于厂区北侧,远离居民区敏感点,并在厂界设置围墙(高约2米),在东侧、南侧厂界围墙内建设库房,以起隔音降噪作用。

经上述措施治理后,对厂界外声环境以及居民敏感点影响较小。

4、监测要求

表4-12 监测计划一览表

环境 要素	监测点位	监测项目	监测频次
声环境	厂界外 1m、高 度 1.2m 以上	Leq (A)	年

四、固体废物

本项目主要固体废物为职工生活垃圾、布袋除尘器收集的粉尘、热风炉

灰渣、筛分杂质霉变玉米。

1、生活垃圾

本项目生活垃圾按 0.5kg/d·人计算,本项目劳动定员 5 人,则生活垃圾产生量为 0.3t/a;收集于厂区垃圾桶内,定期由环卫部门处理。

2、布袋除尘器收集的粉尘

本项目布袋除尘器收集的粉尘量为 0.072t/a; 暂存于灰棚内, 收集后定期 外卖。

3、热风炉灰渣

本项目年燃生物质成型燃料约150t,热风炉灰渣产生量约为45t/a;暂存于渣棚内,收集后定期外售。

4、筛分杂质及霉变玉米

本项目筛分杂质(土、秸秆杂物、碎屑等)及霉变玉米产生量约为12t/a; 暂存于库房内,定期由环卫部门处理。

依据《固体废物分类与代码目录》,本项目固体废物产生量及处置情况详 见下表。

表 4-13 固体废物产生量及处置情况一览表 单位: t/a

					,
<i></i>	<u>污染物名称</u>	<u>一般固</u> <u>体废物</u> <u>代码</u>	<u>说明</u>	<u>产生</u> <u>量</u>	<u> </u>
	<u>生活垃圾</u>	<u>990-001</u> <u>-01</u>		<u>0.3</u>	<u>市政环卫部门统一</u> <u>清运</u>
	<u>除尘器收集</u> <u>的粉尘</u>	<u>660-001</u> <u>-01</u>	指各种除尘设 施收集的工业 粉尘,不包括 粉煤灰	<u>0.072</u>	暂存于灰棚,定期外
<u>一般固体</u> <u>废物</u>	<u>热风炉灰渣</u>	<u>640-001</u> <u>-01</u>	指工业和民用 锅炉及其他设 <u>备燃烧煤或其</u> 他燃料所排出 的废渣(灰)	<u>45</u>	自任 1 次侧,足别刀 <u>售。</u>
	<u>筛分杂质及</u> <u>霉变玉米</u>	<u>340-001</u> <u>-01</u>	指粮食在食品 加工过程中产 生的废物	<u>12</u>	<i>定期由环卫部门处</i> <u>理。</u>

表 4-14 固体废物自行贮存设施信息一览表

设施名称 灰渣场 设施编号 HZ001

设施类型	自行贮存设施	设施位置	E125° 49′ 2.71450 ″,N44° 40′ 2.47406″
自行贮存能力	5t	面积 (m²)	50

五、环境风险

1、评价依据:建设项目风险源调查

根据《建设项目环境风险评价技术导则》(HJ169-2018) 附录 B,本项目主要原辅材料、燃料、中间产品、副产品、最终产品、污染物、火灾和爆炸伴生/次生物等物质中不存在风险物质。

2、环境风险分析

但由于本项目使用的生物质致密成型燃料本身具有可燃性,在储存过程中会有发生火灾的风险,如储存不当将会发生火灾,因此,环评建议采取以下措施:

- ①燃料堆场应设在远居民区的位置,尽量避免对周围环境造成不利影响。
- ②项目应按照《建筑设计防火规范》(GB50016-2014)设防,建设一套 完善的消防系统,包括消防通道、应急灯、消防栓及灭火器等。
- ③应在燃料堆场设置"严禁烟火"、"禁火区"等警戒标语和标牌。禁止携带火种进入燃料储存区域。

因此, 预防了堆场燃烧对周边居民造成的影响。

3、评价结论与建议

综上所述,本项目存在一定的风险,风险度在可接受的范围以内,建设单位需从设备采用至严格安全管理系统的建立、安全部门的审核等方面提出行之有效的方案。为防患于未然,杜绝事故发生,建议在落实本评价提出的风险事故防范措施的同时,还要在建成投产同时验收落实有关安全管理措施,力求将本项目风险事故发生概率及影响危害程度降至最低。

五、环境保护措施监督检查清单

内容	排放口(编号、	污染物项	环境保护措	执行标准
要素	名称)/污染源	目	施	
大气环境	DA001 烘干炉排 气筒	颗粒物 二氧化硫 氮氧化物 烟气黑度	布袋除尘器 +15m 高排气 筒	颗粒物、二氧化硫满足《工业窑炉大气污染物排放标准》(GB9078-1996)中二级标准; 氮氧化物满足《大气污染物综合排放标准》(GB16297-1996)中相应要求
70 (21-36	烘干、筛分粉尘	颗粒物	抑尘罩	《大气污染物综合排放标
	燃料输送粉尘	颗粒物	抑尘罩	准》(GB16297-1996) 无组 织排放标准
地表水环境	生活污水	生活污水	排入厂区自 建防渗旱厕	定期清掏不外排
	干燥机主机	65-75	减震垫+消声 器+建筑隔 声	
	减速机	85-90	減震垫+消声 器+建筑隔 声	
	塔风机	65-85	減震垫+消声 器+建筑隔 声	
去 IT lò	热风炉	60-80	减震垫+消声 器+建筑隔 声	《工业企业厂界环境噪声 排放标准》
声环境	鼓风机	70-90	减震垫+消声 器+建筑隔 声	(GB12348-2008) 中 1 类 标准
	提升机	85-90	减震垫+消声 器+建筑隔 声	
	除渣机	65-75	减震垫+消声 器+建筑隔 声	
	燃料输送机	85-90	減震垫+消声 器+建筑隔 声	

固体废物		和霉变玉米分类集中收集,交由环 文集粉尘及灰渣暂存于渣棚,定期&	
土壤及地下水污染防治措施	防渗漏处理,防渗漏 固防渗的材料建造。 同时其地面须为耐腐	放场所、燃料堆场及灰渣堆场,应 措施如下:建设堵截泄漏的裙脚, 应有隔离设施、报警装置和防风、 蚀的硬化地面,且地面无裂隙;通 谁放不会对地下水、土壤产生影响	地面与裙脚要用坚 防晒、防雨设施, 过采取以上措施可
环境风险 防范措施	采用至严格安全管理 方案。为防患于未然 防范措施的同时,还	险,风险度在可接受的范围以内, 系统的建立、安全部门的审核等方 ,杜绝事故发生,建议在落实本评 要在建成投产同时验收落实有关安 险事故发生概率及影响危害程度降	面提出行之有效的 价提出的风险事故 全管理措施,力求
其他环境管理要求	2、定期、定时检查环 作管理和设备的维护	总投资为 200 万元,其中环保投资 资估算详见下表。 表 5-1 环保投资明细表 措施	
	-	合计	20

六、结论

综上所述,本项目符合国家产业政策,针对生产过程中可能存在的环境问题均
 采取严格有效的防治措施,能够达到主要污染物排放浓度达标的要求,其对大气、
 地表水、声环境、地下水环境、土壤环境产生的影响较小,项目建设具有一定的社
 会效益与经济效益,在严格执行本环评提出的污染治理措施基础上,本项目的建设
 从环境保护角度来看,选址合理,项目可行。

附表

建设项目污染物排放量汇总表

项目 分类	污染物	名称	现有工程排放量 (固体废物产生 量)①	现有工程 许可排放量 ②	在建工程 排放量(固体废物 产生量)③	本项目 排放量(固体废物 产生量) ④	以新带老削减量(新建项目不填)⑤	本项目建成后 全厂排放量(固体废物产生量)⑥	变化量 ⑦
	炉烟 二	が 対数物 氧化硫 氧化物	/	/	/	0.004t/a 0.071t/a 0.157t/a		0.004t/a 0.071t/a 0.157t/a	+0.004t/a +0.071t/a +0.157t/a
废气	烘干粉	尘	/	/	/	0.002t/a		0.002t/a	+0.002t/a
	筛分粉	尘	/	/	/	0.0002t/a		0.0002t/a	+0.0002t/a
废水	生活污	水	/	/	/	14.4t/a		14.4t/a	+14.4t/a
	生活垃	级	/	/	/	0.3t/a		0.3t/a	+0.3t/a
一般工业	筛分杂质及	霉变玉米	/	/	/	12t/a		12t/a	+12t/a
固体 废物	布袋除尘岩	器粉尘	/	/	/	0.072t/a		0.072t/a	+0.072t/a
	灰渣	:	/	/	/	45t/a		45t/a	+45t/a

注: ⑥=①+③+④-⑤; ⑦=⑥-①

备案表

编号:

德惠市环境保护局建设项目环境影响评价备案表

项目名称		吉林省惠达粮	米有限公司玉	米烘于塔建	设项目	1	
建设地址		德	惠市达家沟镇作	中达街			
建设单位		吉材	省惠达粮米有	限公司			
建设性质		新建	总投资(方元)		20	0	
占地面积 (m²)		2000	建筑面积 (m²)		60	0	
法人代表	于水	身份证号	2.	2018	(512	
联系人	李	联系电话		1:			
统一社会位	言用代码		912201837	776585763Y			
环境影响评价	介行业类别	四十一、电力、(包:	热力生产和供 括建设单位自				应工程
国民经济征	亍业类型		D4430 热力	生产和供应	Ź		
项目 基本 情况		台 4t/h 生物质热 为成型生物质燃		烘干,玉米炒	共千量	约 2000	吨/年,
环评类别		□报告书	■报告表	: [□登记	己表	
环评单位		吉林东北	:煤炭工业环保研	F究有限公司			
监测单位		吉村	林省绿科检测有[限公司			
项 目	宋晓丽	是否提交环 评大纲或	否	环评报	2告	□会i	义审查
负责人	小 玩削	工作方案	Н	审查形	注	□直打	妾审查
其他事项:							
经办人: 部门负责	:人:			2025	5年	月	日

- 注: 1、此表一式 2 份: 分送环保局、环评单位各一份。
 - 2、环评单位需将此备案表附在环境影响评价文件之后。
 - 3、环保局在受理环评文件时,审核环境数据监测或认证单位与本备案表是否一致。

检测报告

委托单位:	吉林省惠达粮米有限公司
受检单位:	吉林省惠达粮米有限公司
检测项目:	环境空气

检测报告说明

- 1. 本检测报告仅对本委托项目负责;
- 2. 报告无加盖检测专用章或公章无效,报告无加盖骑缝章无效;
- 3. 报告涂改、错页、换页、漏页无效:
- 4. 检测单位名称与检测报告专用章名称不符者无效;
- 5. 报告无审核人、批准人(或单位负责人)签名无效;
- 6. 未经书面同意不得复制或作为它用(完整复印者除外);
- 7. 委托检测仅对当时工况及环境状况有效, 自送样品仅对该样品检 测结果负责:
- 8. 委托方如对检测报告有异议,可于报告收到 15 个工作日内向本公 司提出,本公司会及时予以答复,超过15个工作日视作无异议;
- 9. 本报告不作为仲裁、诉讼、产品鉴定等依据。

检测单位名称: 吉林省绿科检测有限公司

检测单位地址:长春市净月高新技术产业开发区金碧街 999 号

联系电话: 0431-84888288 传 真: 0431-82774000

邮政编码: 130117

一、前言

受吉林省惠达粮米有限公司委托,吉林省绿科检测有限公司实验室根据国家环境检测技术规范和质量控制有关要求,于 2025 年 01 月 20 日~26 日对吉林省惠达粮米有限公司附近的环境空气行了采样监测。

二、委托单位与受检单位信息

表 1 委托单位与受检单位信息

委托单位	委托单位地址	受检单位	受检单位地址
吉林省惠达粮米有限	德惠市达家沟镇仲达	吉林省惠达粮米有限	德惠市达家沟镇仲达
公司	街	公司	街

三、检测项目、点位、因子、频次及检测日期

本项目检测项目的点位、因子、频次及检测日期见表 2。

表 2 检测点位、因子、频次、日期

类别	检测点位	检测因子	检测频次	检测日期
		总悬浮颗粒物	日均值,共7天	
	项目所在地	一层儿花层层儿棚	4次/天、日均值,	and the second of the second
		二氧化硫、氮氧化物	共7天	2025年01月20日
环境空气	项目所在地东	总悬浮颗粒物	日均值,共7天	~26 日
	北1.5km处(郝	一层以苏 复层以栅	4次/天、日均值,	
	家沟)	二氧化硫、氮氧化物	共7天	

四、检测方法

表 3 检测方法

类别	检测因子	检测方法	检测依据			
	总悬浮颗粒物	环境空气 总悬浮颗粒物的测定 重量法	НЈ 1263-2022			
环境空气	二氧化硫	环境空气 二氧化硫的测定 甲醛吸收-副 玫瑰苯胺分光光度法	НЈ 533-2009			
	氮氧化物	环境空气 氮氧化物(一氧化氮和二氧化 氮)的测定 盐酸萘乙二胺分光光度法	НЈ 479-2009			

五、检测仪器

CP114 电子天平(仪器编号: LKYQ-072)、KE-6E 大气采样器、UV1600 紫外可见分光光度计(仪器编号: LKYQ-091)、TQ-1000 双路大气采样器)。

六、检测结果

表 4 环境空气检测结果

类别	检测日期	检测点位	检测因子	检测单位	检测组	果
大冽	- Lar IV4 H VA1		总悬浮颗粒物	μg/m³	日均值	93
		32.5		mg/m ³	2:00	0.030
			* 8	mg/m ³	8:00	0.022
			二氧化硫	mg/m ³	14:00	0.028
				mg/m ³	20:00	0.030
		项目所在地		mg/m ³	日均值	0.028
*			5 2 4	mg/m³	2:00	0.039
				mg/m ³	8:00	0.039
		100 s 100 s	氮氧化物	mg/m ³	14:00	0.031
2025年 01		12	mg/m ³	20:00	0.031	
			mg/m ³	日均值	0.035	
	月 20 日		总悬浮颗粒物	μg/m³	日均值	99
				mg/m ³	2:00	0.025
	项目所在地东北		mg/m ³	8:00	0.023	
		二氧化硫	mg/m ³	14:00	0.025	
			mg/m ³	20:00	0.027	
环境空气		1.5km 处(郝家 沟)		mg/m ³	日均值	0.025
AL-SELL V				mg/m ³	2:00	0.037
				mg/m ³	8:00	0.035
		S = 2	氮氧化物	mg/m ³	14:00	0.039
		* * * * * * * * * * * * * * * * * * * *		mg/m ³	20:00	0.037
				mg/m ³	日均值	0.037
			总悬浮颗粒物	$\mu g/m^3$	日均值	97
				mg/m ³	2:00	0.028
				mg/m ³	8:00	0.030
			二氧化硫	mg/m ³	14:00	0.02
, =				mg/m ³	20:00	0.02
	2025年01	项目所在地		mg/m ³	日均值	0.02
	月 21 日			mg/m³	2:00	0.03
1				mg/m ³	8:00	0.03
			氮氧化物	mg/m ³	14:00	0.03
		*	1 5	mg/m ³	20:00	93
				mg/m ³	日均值	0.03

续上表

类别	检测日期	检测点位	检测因子	检测单位	检测结	果
J. Mi	par 9 14 1774		总悬浮颗粒物	μg/m³	日均值	88
				mg/m ³	2:00	0.028
				mg/m ³	8:00	0.026
			二氧化硫	mg/m ³	14:00	0.022
				mg/m ³	20:00	0.024
	2025年01	项目所在地东北 1.5km 处(郝家		mg/m ³	日均值	0.025
	月 21 日	沟)		mg/m ³	2:00	0.034
				mg/m ³	8:00	0.034
			氮氧化物	mg/m ³	14:00	0.034
			Production on the control of the con	mg/m ³	20:00	0.039
		= /		mg/m ³	日均值	0.035
	「境空气	项目所在地	总悬浮颗粒物	μg/m ³	日均值	83
			二氧化硫	mg/m ³	2:00	0.026
				mg/m ³	8:00	0.026
				mg/m ³	14:00	0.025
				mg/m ³	20:00	0.024
环境空气				mg/m³	日均值	0.025
			氮氧化物	mg/m ³	2:00	0.031
				mg/m ³	8:00	0.036
				mg/m ³	14:00	0.039
				mg/m ³	20:00	0.032
	2025年01			mg/m ³	日均值	0.035
	月 22 日		总悬浮颗粒物	$\mu g/m^3$	日均值	83
				mg/m ³	2:00	0.030
				mg/m ³	8:00	0.024
	7		二氧化硫	mg/m ³	14:00	0.02
		 项目所在地东北		mg/m ³	20:00	0.02
		1.5km 处 (郝家		mg/m ³	日均值	0.02
		沟)		mg/m³	2:00	0.03
				mg/m ³	8:00	0.03
-			氮氧化物	mg/m ³	14:00	0.03
				mg/m ³	20:00	88
				mg/m ³	日均值	0.02

续上表

读上表 ————————————————————————————————————	检测日期	检测点位	检测因子	检测单位	检测结	果
类别	位	IT AND	总悬浮颗粒物	μg/m ³	日均值	97
				mg/m³	2:00	0.024
				mg/m ³	8:00	0.030
			二氧化硫	mg/m ³	14:00	0.022
				mg/m ³	20:00	0.022
		项目所在地		mg/m³	日均值	0.025
		次日///正元		mg/m ³	2:00	0.035
			1 8 5 5 19	mg/m ³	8:00	0.032
			氮氧化物	mg/m ³	14:00	0.031
, "				mg/m ³	20:00	0.034
ř.	2025年01			mg/m ³	日均值	0.033
	2025年01 月23日		总悬浮颗粒物	μg/m³	日均值	83
	7, 25 /	项目所在地东北 1.5km 处(郝家 沟)	GA.	mg/m ³	2:00	0.027
环境空气				mg/m ³	8:00	0.022
				mg/m ³	14:00	0.029
				mg/m ³	20:00	0.030
				mg/m ³	日均值	0.027
				mg/m ³	2:00	0.037
				mg/m ³	8:00	0.032
			氮氧化物	mg/m ³	14:00	0.035
				mg/m ³	20:00	0.030
				mg/m ³	日均值	0.034
			总悬浮颗粒物	$\mu g/m^3$	日均值	85
		(A)		mg/m ³	2:00	0.030
				mg/m ³	8:00	0.029
	2		二氧化硫	mg/m ³	14:00	0.02
		* * * * * * * * * * * * * * * * * * * *		mg/m ³	20:00	0.02
	2025年01	项目所在地		mg/m ³	日均值	0.02
月 24 日			mg/m ³	2:00	0.03	
				mg/m ³	8:00	0.03
			氮氧化物	mg/m ³	14:00	0.03
				mg/m ³	20:00	97
		- N		mg/m ³	日均值	0.02

续上表

卖上表 ───────── 类别	检测日期	检测点位	检测因子	检测单位	检测结	果
火 剂	Tar 12/3 1−1 23/1	Pro 6.44.111	总悬浮颗粒物	μg/m³	日均值	88
		,		mg/m ³	2:00	0.027
				mg/m ³	8:00	0.027
			二氧化硫	mg/m ³	14:00	0.030
				mg/m ³	20:00	0.028
	2025年01	项目所在地东北 1.5km 处(郝家		mg/m ³	日均值	0.028
	月 24 日	沟)		mg/m ³	2:00	0.030
				mg/m ³	8:00	0.031
			氮氧化物	mg/m ³	14:00	0.038
				mg/m ³	20:00	0.033
1,00			2	mg/m ³	日均值	0.033
			总悬浮颗粒物	μg/m ³	日均值	92
*				mg/m ³	2:00	0.027
	*		mg/m ³	8:00	0.028	
		项目所在地	二氧化硫	mg/m ³	14:00	0.030
	:气			mg/m ³	20:00	0.027
环境空气				mg/m ³	日均值	0.028
			氮氧化物	mg/m ³	2:00	0.032
				mg/m ³	8:00	0.03
				mg/m ³	14:00	0.03
				mg/m ³	20:00	0.03
	2025年01			mg/m ³	日均值	0.03
	月 25 日		总悬浮颗粒物	$\mu g/m^3$	日均值	88
			· Andrew T	mg/m ³	2:00	0.02
				mg/m ³	8:00	0.02
			二氧化硫	mg/m ³	14:00	0.02
		 项目所在地东北	, 1	mg/m ³	20:00	0.02
	1.5km 处(郝家		mg/m ³	日均值	0.02	
	沟)		mg/m ³	2:00	0.03	
			mg/m ³	8:00	0.03	
			氮氧化物	mg/m³	14:00	0.03
			1 H	mg/m ³	20:00	88
				mg/m ³	日均值	0.02

续上表

类别	检测日期	检测点位	检测因子	检测单位	检测统	结果
			总悬浮颗粒物	μg/m ³	日均值	97
				mg/m ³	2:00	0.024
				mg/m ³	8:00	0.022
-		a A	二氧化硫	mg/m ³	14:00	0.024
			\(\frac{1}{3}\)	mg/m ³	20:00	0.024
7		项目所在地	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	mg/m ³	日均值	0.024
				mg/m ³	2:00	0.039
				mg/m ³	8:00	0.038
			氮氧化物	mg/m ³	14:00	0.037
				mg/m ³	20:00	0.038
-	2025年01			mg/m ³	日均值	0.038
不境空气	月 26 日		总悬浮颗粒物	μg/m ³	日均值	88
				mg/m ³	2:00	0.024
			mg/m ³	8:00	0.023	
		 项目所在地东北	二氧化硫	mg/m ³	14:00	0.030
				mg/m ³	20:00	0.023
		1.5km 处(郝家		mg/m ³	日均值	0.025
	沟)	- ,-,-	mg/m ³	2:00	0.035	
		100	mg/m ³	8:00	0.034	
		氮氧化物	mg/m ³	14:00	0.039	
			1	mg/m ³	20:00	0.034
				mg/m ³	日均值	0.036

(以下空白)

编制人:展得多

审核人:

签发日期: 2025年02月06日

2/1/1/2

检测报告

委托单位:_	吉林省惠达粮米有限公司	
受检单位:_	吉林省惠达粮米有限公司	10
检测项目.	噪声	

吉林省绿科检测有限公司二零二五年二月六日

检测报告说明

- 1. 本检测报告仅对本委托项目负责;
- 2. 报告无加盖检测专用章或公章无效,报告无加盖骑缝章无效;
- 3. 报告涂改、错页、换页、漏页无效;
- 4. 检测单位名称与检测报告专用章名称不符者无效;
- 5. 报告无审核人、批准人(或单位负责人)签名无效;
- 6. 未经书面同意不得复制或作为它用(完整复印者除外);
- 7. 委托检测仅对当时工况及环境状况有效,自送样品仅对该样品检测结果负责;
- 8. 委托方如对检测报告有异议,可于报告收到 15 个工作日内向本公司提出,本公司会及时予以答复,超过 15 个工作日视作无异议;
- 9. 本报告不作为仲裁、诉讼、产品鉴定等依据。

检测单位名称: 吉林省绿科检测有限公司

检测单位地址:长春市净月高新技术产业开发区金碧街 999 号

联系电话: 0431-84888288 传 真: 0431-82774000

邮政编码: 130117

一、前言

受吉林省惠达粮米有限公司委托,吉林省绿科检测有限公司实验室根据国家环境检测技术规范和质量控制有关要求,于 2025 年 01 月 20 日-21 日对吉林省惠达粮米有限公司的厂界噪声进行了监测。

二、委托单位与受检单位信息

表 1 委托单位与受检单位信息

委托单位	委托单位地址	受检单位	受检单位地址
吉林省惠达粮米有限 公司	德惠市达家沟镇仲达 街	吉林省惠达粮米有限 公司	德惠市达家沟镇仲达 街

三、检测项目、点位、因子、频次及检测日期

本项目检测项目的点位、因子、频次及检测日期见表 2。

表 2 检测点位、因子、频次、日期

类别	检测点位	检测因子	检测频次	检测日期
	厂界西侧 1m 处			
#F -t-	厂界南侧 1m 处	· · · · · · · · · · · · · · · · · · ·	1次/天,昼夜各	2025年01月20
噪声	厂界东侧 1m 处	- 噪声	一次,2天	日-21 日
	厂界北侧 1m 处		7 E	

四、检测方法

表 3 检测方法

类别	检测因子	检测方法	检测依据
噪声	噪声	工业企业厂界环境噪声排放标准	GB12348-2008

五、检测仪器

AWA6228 型多功能声级计(仪器编号: LKYQ-026)、AWA6221A 型声校准器(仪器编号: LKYQ-027)。

市場公グ

六、检测结果

表 4 噪声检测结果

		1	检测结果	
类别	监测点位	测量日期	昼间 Leq dB(A)	夜间 Leq dB(A)
7	厂界西侧 1m 处		52	43
	厂界南侧 1m 处	2025年01月	53	43
· ·	厂界东侧 1m 处	20 日	51	41
ur de	厂界北侧 1m 处		52	42
噪声	厂界西侧 1m 处		53	43
	厂界南侧 1m 处	2025年01月	53	42
	厂界东侧 1m 处	21 日	51	41
	厂界北侧 1m 处		51	41

(以下空白)

编制人级净强

审核人: 21/1/2

签发日期: 2025年02月06日

填表日期 <u>20 75</u> 年 8月8 日

项目名称	吉林省惠达粮米有限公司玉米烘干塔建设项目
一、本页为公众意	元 见
	无
与响施意《公规拆业无诉环项环关(境参,、与的不公定迁等关求评有鬼环众定迁等关求评好健建:响办及产目见于内容。以根评法征、环或项的	
	(填写该项内容时请勿涉及国家秘密、商业秘密、个人隐私等内容,若本页不 够可另附页)

二、本页为公众信息		
(一)公众为公民的请填写以下信息		
姓名	本面 "	
身份证号	220/8	77/
有效联系方式 (电话号码或邮箱)	138	
经常居住地址	达象均镇	
是否同意公开个人信息 (填同意或不同意)	(若不填则默认为不同意公开)	
(二)公众为法人或其他组织的请填写以下作	言息	
单位名称		
工商注册号或统一社会信用代码		
有效联系方式 (电话号码或邮箱)		
地址		
注: 法人或其他组织信息原则上可以公开, 能公开的具体信息。	· 告涉及不能公开的信息请在此栏中注	:明法律依据和不

填表日期 2015 年 8月 8日

项目名称	吉林省惠达粮米有限公司玉米烘干塔建设项目
一、本页为公众意	·····································
与响施意《公规拆业无诉环本和有见环众定迁等关求评项环关(境参,、与的不公耳境的注影与涉财项意属参环保建:响办及产目见于内球护议根评法征、环或项)影措和据价》地就评者目	F
	(填写该项内容时请勿涉及国家秘密、商业秘密、个人隐私等内容, 若本页不 够可另附页)

二、本页为公众信息		
(一)公众为公民的请填写以下信息		
姓名	4	
身份证号	2201	24226
有效联系方式 (电话号码或邮箱)	176	. 55
经常居住地址	北海湖井	栗
是否同意公开个人信息 (填同意或不同意)	(若不填则默认为不同意	意公开) (5) 义
(二)公众为法人或其他组织的请填写以下作	言息	
单位名称		
工商注册号或统一社会信用代码		
有效联系方式 (电话号码或邮箱)		
地址		
注: 法人或其他组织信息原则上可以公开, 表 能公开的具体信息。	告涉及不能公开的信息请在	E此栏中注明法律依据和不

-

填表日期 2025 年 8月8日

项目名称	吉林省惠达粮米有限公司玉米烘干塔建设项目
一、本页为公众意	见
与响施意《公规拆业无诉环本和有见环众定迁等关求评项环关(境参,、与的不公目境的注影与涉财项意属参环保建:响办及产目见于内球使建;响办及产目见于容觉护议根评法征、环或项)	(填写该项内容时请勿涉及国家秘密、商业秘密、个人隐私等内容,若本页不够可另附页)

二、本页为公众信息	
(一)公众为公民的请填写以下信息	. Miles
姓名	李。
身份证号	2201: 211
有效联系方式 (电话号码或邮箱)	/5
经常居住地址	送家沟镇.
是否同意公开 个人 信息 (填同意或不同意)	(若不填则默认为不同意公开)
(二)公众为法人或其他组织的请填写以下作	言息
单位名称	
工商注册号或统一社会信用代码	
有效联系方式 (电话号码或邮箱)	
地 址	
注:法人或其他组织信息原则上可以公开, 表 能公开的具体信息。	」 告涉及不能公开的信息请在此栏中注明法律依据和不

填表日期 <u>201</u> 年 8 月 8 日

项目名称	吉林省惠达粮米有限公司玉米烘干塔建设项目
一、本页为公众意	ī见
与响施意《公规拆业无诉环本和有见环众定迁等关求评项环关(境参,、与的不公目境的注影与涉财项意属参环保建:响办及产目见于内环保建:响办及产目见于内下保建:响办及产目见于内	(填写该项内容时请勿涉及国家秘密、商业秘密、个人隐私等内容,若本页不够可另附页)

二、本页为公众信息		
(一)公众为公民的请填写以下信息		
姓 名	建	
身份证号	2201	34218
有效联系方式 (电话号码或邮箱)	139	1
经常居住地址	述教治族	
是否同意公开个人信息 (填同意或不同意)	(若不填则默认为不同意公开)	7 X
(二)公众为法人或其他组织的请填写以下作	言息	
单位名称		
工商注册号或统一社会信用代码		
有效联系方式 (电话号码或邮箱)		
地址		
注:法人或其他组织信息原则上可以公开, 表 能公开的具体信息。	 吉涉及不能公开的信息请在此栏中注	明法律依据和不

填表日期 2025 年8月8日

项目名称	吉林省惠达粮米有限公司玉米烘干塔建设项目
一、本页为公众意	T见
与响施意《公规拆业无诉环本和有见环众定迁等关求评项环关(境参,、与的不公耳境的注影与涉财项意属参环保建:响办及产目见于内球护议根评法征、环或项的影措和据价》地就评者目	一大 (填写该项内容时请勿涉及国家秘密、商业秘密、个人隐私等内容,若本页不
	《溪马以次门台时间为沙及国家秘密、商业秘密、个人隐私等内容,若本贝尔

二、本页为公众信息		
(一)公众为公民的请填写以下信息	4"	
姓名	杂	
身份证号	22 4267	
有效联系方式 (电话号码或邮箱)	15	
经常居住地址	还家坳技	
是否同意公开个人信息 (填同意或不同意)	(若不填则默认为不同意公开) 周 意	
(二)公众为法人或其他组织的请填写以下信	言息	
单位名称		
工商注册号或统一社会信用代码		
有效联系方式 (电话号码或邮箱)		
地址		
注:法人或其他组织信息原则上可以公开,若涉及不能公开的信息请在此栏中注明法律依据和不能公开的具体信息。		

填表日期 2075 年 8 月 8 日

项目名称	吉林省惠达粮米有限公司玉米烘干塔建设项目
一、本页为公众意	·见
与响施意《公规拆业无诉环本和有见环众定迁等关求评项环关(境参,、与的不公时境参,、与的不公环保建:响办及产目见于内环保建:响办及产目见于内域护议根评法征、环或项容影措和据价》地就评者目	(填写该项内容时请勿涉及国家秘密、商业秘密、个人隐私等内容,若本页不够可另附页)

二、本页为公众信息		
(一)公众为公民的请填写以下信息		
姓 名	13	
身份证号	2201	2/ X
有效联系方式 (电话号码或邮箱)	15	15
经常居住地址	达家沟镇。	t社
是否同意公开个人信息 (填同意或不同意)	(若不填则默认为不同意公开)	阅恋
(二)公众为法人或其他组织的请填写以下(言息	
单位名称		
工商注册号或统一社会信用代码		
有效联系方式 (电话号码或邮箱)		
地址		
注:法人或其他组织信息原则上可以公开, 着能公开的具体信息。	告涉及不能公开的信息请在此栏中?	主明法律依据和不

填表日期 2/07/5 年 8月8日

 项目名称 	吉林省惠达粮米有限公司玉米烘干塔建设项目
一、本页为公众意	^表 见
与响施意《公规拆业无诉环本和有见环众定迁等关求评项环关(境参,、与的不公耳境的注影与涉财项意属参环保建:响办及产目见于内部,以根评法征、环或项)	(填写该项内容时请勿涉及国家秘密、商业秘密、个人隐私等内容,若本页不
业等与项目环评 无关的意见或者 诉求不属于项目	(填写该项内容时请勿涉及国家秘密、商业秘密、个人隐私等内容,若本页不 够可另附页)

(二)公众为法人或其他组织的请填写以下信息 单位名称 工商注册号或统一社会信用代码 有效联系方式	(一) 公众为公民的请填写以下信息		
有效联系方式 (电话号码或邮箱) 经常居住地址 是否同意公开个人信息 (填同意或不同意) (若不填则默认为不同意公开)	姓 名	4	
(电话号码或邮箱) 经常居住地址 是否同意公开个人信息 (填同意或不同意) (若不填则默认为不同意公开) (一)公众为法人或其他组织的请填写以下信息 单位名称 工商注册号或统一社会信用代码	身份证号	220	2/5
是否同意公开个人信息 (填同意或不同意) (若不填则默认为不同意公开) (13	
(其同意或不同意) (若不填则默认为不同意公开) (二)公众为法人或其他组织的请填写以下信息 单位名称 工商注册号或统一社会信用代码 有效联系方式	经常居住地址	还家沟龟	
单位名称 工商注册号或统一社会信用代码 有效联系方式		(若不填则默认为不同意公开)	自急
工商注册号或统一社会信用代码 有效联系方式	(二)公众为法人或其他组织的请填写以下作	吉息	
有效联系方式	单位名称		
	工商注册号或统一社会信用代码		
(电话亏哟蚁邮相)	有效联系方式 (电话号码或邮箱)		
地址	地址		

附件 1

建设项目环境影响评价公众意见表

填表日期 2025 年8月8日

项目名称	吉林省惠达粮米有限公司玉米烘干塔建设项目
一、本页为公众意	见
与响施意《公规拆业无诉环本和有见环众定迁等关求评项环关(境参,、与的不公目境的注影与涉财项意属参环保建:响办及产目见于内球护议根评法征、环或项)影措和据价》地就评者目	(填写该项内容时请勿涉及国家秘密、商业秘密、个人隐私等内容,若本页不
	(填写该项内容时请勿涉及国家秘密、商业秘密、个人隐私等内容,若本页不够可另附页)

二、本页为公众信息		
(一)公众为公民的请填写以下信息	J	
姓名	Fy	
身份证号	22	552
有效联系方式 (电话号码或邮箱)	15.	/
经常居住地址	北宪的 卷葉	
是否同意公开个人信息 (填同意或不同意)	(若不填则默认为不同意公开)	
(二)公众为法人或其他组织的请填写以下信	言息	
单位名称		
工商注册号或统一社会信用代码		
有效联系方式 (电话号码或邮箱)		
地址		
注:法人或其他组织信息原则上可以公开,若涉及不能公开的信息请在此栏中注明法律依据和不能公开的具体信息。		

吉林省惠达粮米有限公司玉米烘干塔建设项目 **环境影响评价文件确认书**

我单位委托吉林东北煤炭工业环保研究有限公司编制的《吉林省 惠达粮米有限公司玉米烘干塔建设项目环境影响报告表》已完成,经 认真审核,我单位认可该环评文件中的工程内容及采用的文件、数据 和图件等资料均真实可靠,我单位同意环评文件的评价结论,所采取 的污染治理措施能够全部落实。

特此确认。

吉林省惠达粮米有限公司玉米烘干塔建设项目

环境影响报告书(表)技术评估会专家评审意见

根据《吉林省环境保护厅关干 2016 年上半年全省环评机构定期考核工作中环评审批存在的问题的通报》(吉环管字[2016]37 号)中相关要求"对于编制环境影响报告书(表)等较复杂的建设项目开展专家评审。"

专家通过对环评文件的审核,在对企业周边环境和本项目的作业方式了解的基础上,进行了认直的审查,根据多数专家意见形成如下技术评估意见:

一、 项目基本情况及环境可行性

基本情况包括: 1. 项目基本概况,如依据、性质、规模、投资、方案、工艺等内容。

2. 主要环境保护防治对策及环境影响评价内容概述。

环境可行性包括: 1. 产业政策符合性, 区域规划符合性, 清洁生产, 选址合理性等。

2. 环境保护措施和对策有效性,项目的环境可行性。

本项目为吉林省惠达粮米有限公司玉米烘干塔建设项目,建设地点位于吉林省长春市德惠市达家沟镇仲达街,项目厂界北侧为农田;西侧隔乡路为农田;厂界东侧、南侧为达家沟镇居民。项目总投资 200 万元,占地面积 2000㎡,建设热风炉房一栋、烘干塔一座,项目建成后,年烘干玉米量 2000t,湿玉米及干玉米不在厂区内贮存。

<u>本项目施工期经采取有效的污染治理措施后,各污染物可以实现达标</u> 排放,没有对区域环境质量产生较大影响。

<u>本项目运营期废水污染物主要为生活污水,生活污水排入厂区防渗旱</u> <u>厕,定期清掏作肥料。</u>

本项目运营期废气污染物主要为烘干粉尘、运输、存储粉尘及热风炉 产生的燃烧烟气等,项目各类废气污染物均得到了有效治理,不会对区域 环境空气质量产生较大影响。 项目各类噪声经采取有效的消声隔声措施后,经距离衰减后,厂界噪声可满足 GB12348—2008《工业企业厂界环境噪声排放标准》中相关标准限值要求。

<u>项目产生的各类固体废物均得到了有效处置,不会对环境质量产生较大影响。</u>

综上,本项目符合国家产业政策,符合区域规划要求,同时针对项目 建设及运行过程中可能存在的环境问题均拟采取严格有效的污染防治措 施,使主要污染物排放浓度满足相关标准要要求,对环境的负面影响较小; 项目综合效益良好,所以从环境保护和可持续发展的角度来看,本项目建 设可行。

二、环境影响报告书(表)质量技术评估意见

与会专家认为,该报告书(表)<u>符合</u>我国现行《环境影响评价技术导则》的有关规定,<u>同意</u>该报告书(表)通过技术评估审查。根据专家评议,该报告书(表)质量为<u>合格</u>。

三、报告书(表)修改与补充完善的建议

且休修改音见加下,

为进一步提高该报告书(表)的科学性与实用性,建议评价单位参考如下具体意见对报告书(表)进行必要修改。

1、细化评价范围内环境敏感保护目标分布情况调查内容,明确各敏感
保护目标距烘干塔之间距离;核准项目用地性质(附证明材料),充实项
<u>目规划符合性分析内容。</u>
2、补充分析企业现状概况及实际建设内容,补充说明本项目与现有稻
米加工车间等的关系;核实特征因子监测数据,补充厂界 50m 内敏感点的
监测数据。

3、细化工程分析内容,核准设备生产能力,核准粮食烘干前后含水率,
复核生物质燃料用量;细化检验工艺过程及其环境影响分析内容;复核工
作制度,一般情况下,烘干塔需要连续运行。
4、细化粮食烘干粉尘环境影响分析内容,细化抑尘罩设置情况,明确
其除尘机理,复核除尘效率;细化厂界无组织排放粉尘达标排放分析内容。
5、复核产噪设备种类、数量及源强(特别是烘干塔噪声源强),复核
噪声影响预测内容,细化噪声污染防治措施。
6、复核固体废物产生量,结合新版《固体废物分类与代码目录》补充
固体废物代码,细化固体废物储存情况。
7、鉴于本项目距敏感保护目标较近,项目建设对敏感保护目标影响较
大,建议补充距项目较近处居民公众参与意见。
8、附生态环境分区管控平台查询分析结果;复核项目生态环境保护措
施监督检查清单;复核监测计划;规范附图附件。
9、专家提出的其它合理化建议。

专家组长签字: 上版扩、

____年___月___日

附件 3

建设项目环评文件 日常考核表

项目名称:_	吉林省惠达粮米有限公司玉米烘干塔建设项目
建设单位:	吉林省惠达粮米有限公司
编制单位:	吉林东北煤炭工业环保研究有限公司
编制主持人:	宋晓丽
评审考核人:	王城下
职务/职称:_	研究员
所在单位:	长春市环境工程评估中心

评审日期: 年 月 日

考 核 内 容	满分	评分
1.确定的评价等级是否恰当,评价标准是否正确,评价范围是否符合要求	10	
2.项目工程概况描述是否全面、准确,生态环境保护目标及与项目位置关系描述是否清楚	10	
3.生态环境影响因素分析(含污染源强核算)是否全面、准确,改扩建项目现有污染问题是否查明	10	
4.环境现状评价是否符合实际,主要环境问题是否阐明	10	
5.生态环境要素、环境风险预测与评价是否全面,影响预测与评价方法、结果是否准确	15	
6.生态环境保护措施针对性、有效性、可行性,环境 监测、环境管理措施的针对性,环保投资的合理性	15	
7.评价结论的综合性、客观性和可信性	10	
8.重点专题和关键问题回答是否清楚、正确	5	
9.附件、图表、化物计量单位是否规范,篇幅文字是否简练	5	
10.环评工作是否有特色	5	
11.环评工作的复杂程度	5	
总 分	100	70

评审考核人对环评文件是否具备审批条件的具体意见

一、项目环境可行性

该项目为吉林省惠达粮米有限公司玉米烘干塔建设项目,其建设符合国家产业政策,符合规划要求,在采取报告中出提出的污染防治措施情况下,项目对区域环境影响是可以接受的,从环境保护角度看,项目建设可行。

二、报告编制质量

该报告编制依据较充分,评价重点较突出,内容基本复核环评导则、技术规范要求,工程分析较全面,预测与评价结果基本可信,提出的污染防治措施基本可行,评价结论基本可信,同意项目通过技术审查。

三、修改补充建议

- 1、细化评价范围内环境敏感保护目标分布情况调查内容,明确各敏感保护目标距烘干塔之间距离;核准项目用地性质(附证明材料),充实项目规划符合性分析内容。
- 2、细化工程分析内容,核准设备生产能力,核准粮食烘干前后含水率,复 核生物质燃料用量;细化检验工艺过程及其环境影响分析内容;复核工作制度, 一般情况下,烘干塔需要连续运行。
- 3、细化粮食烘干粉尘环境影响分析内容,细化抑尘罩设置情况,明确其除 尘机理,复核除尘效率;细化厂界无组织排放粉尘达标排放分析内容。
- 4、复核产噪设备种类、数量及源强(特别是烘干塔噪声源强),复核噪声影响预测内容,细化噪声污染防治措施。
- 5、复核固体废物产生量,结合新版《固体废物分类与代码目录》补充固体 废物代码,细化固体废物储存情况。
- 6、鉴于本项目距敏感保护目标较近,项目建设对敏感保护目标影响较大, 建议补充距项目较近处居民公众参与意见。
 - 7、复核项目环境保护措施监督检查清单内容。

专家签字: 王 邢 丁

项目名称:	吉林省惠达粮米有限公司玉米烘干塔建设项目
建设单位:	吉林省惠达粮米有限公司
编制单位:	吉林东北煤炭工业环保研究有限公司
编制主持人	: 宋晓丽
评审考核人	:
职务/职称:	正高
所在单位:	吉林省恒新环保科技有限公司

评审日期: 2025年 月 日

考 核 内 容	满分	评分
1.确定的评价等级是否恰当,评价标准是否正确,评价范围是否符合要求	10	7
2.项目工程概况描述是否全面、准确,生态环境保护 目标及与项目位置关系描述是否清楚	10	7
3.生态环境影响因素分析(含污染源强核算)是否全面、准确,改扩建项目现有污染问题是否查明	10	6
4.环境现状评价是否符合实际,主要环境问题是否阐明	10	6
5.生态环境要素、环境风险预测与评价是否全面,影响预测与评价方法、结果是否准确	15	12
6.生态环境保护措施针对性、有效性、可行性,环境监测、环境管理措施的针对性,环保投资的合理性	15	12
7.评价结论的综合性、客观性和可信性	10	7
8.重点专题和关键问题回答是否清楚、正确	5	2
9.附件、图表、化物计量单位是否规范,篇幅文字是 否简练	5	2
10.环评工作是否有特色	5	2
11.环评工作的复杂程度	5	2
总 分	100	65

评审考核人对环评文件是否具备审批条件的具体意见

本项目符合产业政策,符合用地规划和"三线一单"要求,在采取严格的环境保护措施情况下,污染物可以做到达标排放、工业固体废物可以得到资源化利用或无害化处置,环评文件分析结果表明,本项目对评价区的环境影响可以接受,鉴于本项目选址临近居民点环境较为敏感,其扬尘及噪声等污染因子对周围环境有一定的影响,在项目建设和运营中严格执行国家、地方各项环境保护政策、法律法规和标准,严格落实本报告提出的各项环境保护措施并确保对周围敏感点的影响可控情况下,从环境保护角度论证,项目建设具有一定的环境可行性。

该报告编制基本符合指南要求,编制较为规范,区域现状描述基本符合实际,工程分析基本清晰,预测结果及评价结论总体可信。 具体修改意见如下:

- 1、明确选址用地性质,分析规划的符合性,补充用地手续;核实声环境功能区划。地理坐标保留3位小数。更新为《关于加强生态环境分区管控的若干措施》,附上生态环境分区管控平台查询分析结果。
- 2、核实工程组成与构建筑物内容;补充设备能力与产品产量的匹配性分析内容。补充分析企业现状概况及实际建设内容,补充说明本项目与现有稻米加工车间等的关系(是租用?还是在原基础上扩建?)。
- 3、根据实际施工内容,补充施工期环境保护措施。补充生物质燃料成分(收到基),考虑热风炉效率,复核燃料消耗量。
- 4、明确生活污水最终去向。补充燃料灰渣等储运工程,核实固废类别,明确去向。
- 5、补充控制单元监测数据及达标情况结论;核实特征因子监测数据(S02?评价标准是导则?),补充厂界50m内敏感点的监测数据;按照小时最大燃料使用量及生物质成分分析报告进行污染物排放计算并进行分析。
- 6、补充原料、燃料及灰渣等储存、运输及装卸过程中可能的产污影响并提出进一步减轻影响的防治措施。

- 7、核实筛分等工艺废气污染物产排情况,补充烘干塔排潮气口采用 抑尘罩的具体建设方案及抑尘率达 90%的可行性。核实噪声源强,根 据声源空间位置及发声持续时间,明确厂界最大贡献值及位置,核实 厂界及敏感目标的影响分析(源强没有依据,有些是室外声源哪里来 的建筑隔声?)。
- 8、核实灰渣去向。根据《排污许可证申请与核发技术规范 工业炉窑》 (HJ1121-2020)核实监测指标及监测频次。
- 9、细化附图附件,补充土地支撑文件,厂区平面布置图要给出比例 尺图例等信息,补充保护目标分布图?附图2中的村屯名称与标注的 不一致。P26本项目施工噪声影响范围内虽无环境敏感点?要根据具 体情况进行分析。

专家签字: 入版

2025年2月21日

项目名称: 吉林省惠达粮米有限公司玉米烘干塔建设项目	
建设单位: 吉林省惠达粮米有限公司	
编制单位: 吉林东北煤炭工业环保研究有限公司	
编制主持人: 宋晓丽	
评审考核人: 蔡宁	
职务/职称: 正高级工程师	
所在单位: 吉林省环境工程评估中心	

评审日期: 年 月

考核内容	满分	评分
1.确定的评价等级是否恰当,评价标准是否正确,评价范围是否符合要求	10	7
2.项目工程概况描述是否全面、准确,生态环境保护目标及与项目位置关系描述是否清楚	10	7
3.生态环境影响因素分析(含污染源强核算)是否全面、准确,改扩建项目现有污染问题是否查明	10	6
4.环境现状评价是否符合实际,主要环境问题是否阐明	10	7
5.生态环境要素、环境风险预测与评价是否全面,影响预测与评价方法、结果是否准确	15	10
6.生态环境保护措施针对性、有效性、可行性,环境 监测、环境管理措施的针对性,环保投资的合理性	15	9
7.评价结论的综合性、客观性和可信性	10	7
8.重点专题和关键问题回答是否清楚、正确	5	4
9.附件、图表、化物计量单位是否规范,篇幅文字是 否简练	5	4
10.环评工作是否有特色	5	3
11.环评工作的复杂程度	5	3
总分	100	67

评审考核人对环评文件是否具备审批条件的具体意见

一、对项目环境可行性的意见

该项目符合国家产业政策,鉴于该项目距离周边村屯较近且高噪声设备较多,加强运营期环境管理,严格落实环评报告(修改补充后)提出的各项污染防治、环境应急和风险防范措施,污染物可以达标排放不对周边居民造成不利影响的前提下,环境影响可以接受,从环保角度该项目建设可行。

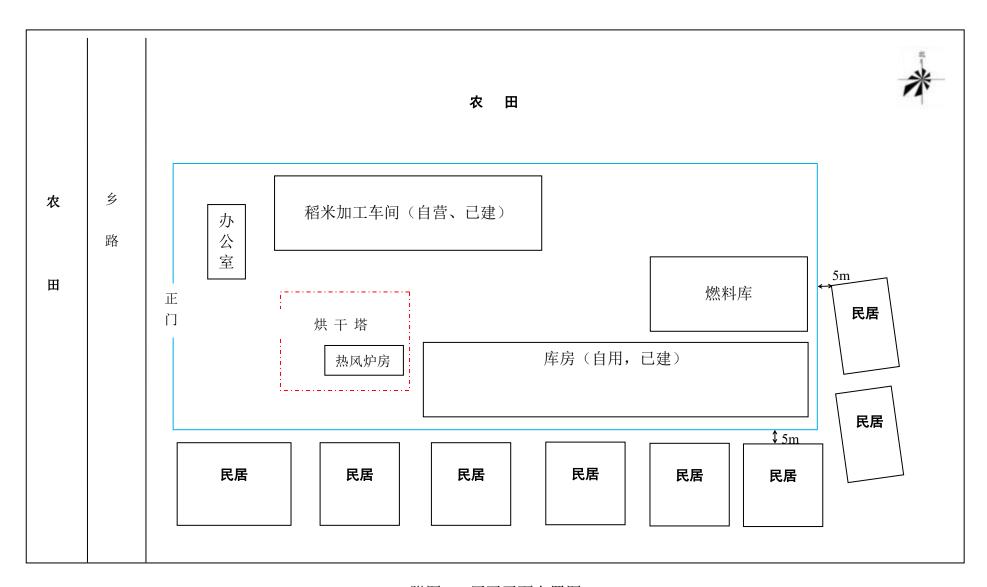
二、对环评文件编制质量的总体评价

该环评文件评价内容基本全面,评价重点较突出,建设内容和工程分析阐述基本清楚,污染防治措施基本可行,环境影响评价结论总体可信,符合相关环评导则要求。

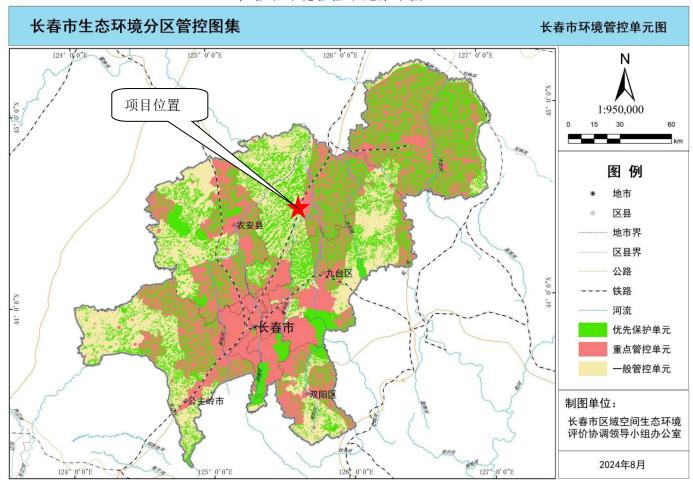

三、对环评文件修改和补充的建议

- 1、《吉林省人民政府关于实施"三线一单"生态环境分区管控的意见》(吉政函[2020]101号)已经由《加强生态环境分区管控的若干措施》更新替代。
- 2、鉴于该项目距离周边居民村屯较近,细化厂区平面布局,细化距离村屯 较近的噪声源和大气污染源,细化噪声达标距离和与村屯居民住宅较近一侧的污 染防治措施,明确隔声墙的高度和隔声窗的安装位置。明确夜间不生产的可行性 分析。
- 3、鉴于输送带等无法封闭的设备应细化粉尘和稻壳等无法收集的颗粒物对周边居民的不利影响分析内容,建议增设大气污染防治措施。
- 4、进一步细化除尘灰等废物收集、暂存和转运过程中的各项污染防治措施,确保不会产生二次污染。
 - 5、规范附图(用行政区划图作为地理位置图的底图)附件。

专家签字: 女子


附图 1:项目位置图

附图 2:大气监测点位及周边敏感点图



附图 3: 周边情况及噪声监测点位

附图 4: 厂区平面布置图

长春市环境管控单元分布图

附图 5 长春市环境管控单元落位图

生态环境分区管控平台查询分析结果

建设项目环评审批基础信息表

	抽事的	位(盖章);		土北外市		X-X H-1. N -	C. Tetratum Salesperate Sentings	1				1 12	
	典衣型	-14. 八面.早ノ:			达粮米有限公司	A STATE OF THE STA	填表人(签字):	12		项目经办。	人(签字):	2	
		项目名称	古林	本省惠达粮米有阳	艮公司玉米烘干塔建	设项目						1	
		项目代码!		The state of the s			建设内容、规模		建设热风炉房一栋、烘干塔一座,项目建成后, 年烘干玉米量2000				
	建设地点			吉林省德惠市达家沟镇仲达街									
	项目建设周期(月)			1.0			计划开			2025年4月			
		环境影响评价行业类别	四十一、电力、热	力生产和供应业— 用的	91热力生产和供应工程 的供热工程)	(包括建设单位自建自	预计投		2025年5月				
建设		建设性质		新建(迁徙)		国民经济行业类型		A	0514农产品初加工汽	舌动; D4430热力生产和	供应业		
项目	H	N有工程排污许可证编号 (改、扩建项目)			/	/ A		请类别	新中项目			50000000000000000000000000000000000000	
		规划环评开展情况			不需开展	100000000000000000000000000000000000000	规划环评文件名				1		
		规划环评审查机关		7			规划环评审查意见文号			/			
	建设地点中心坐标 ³ 经度 (非线性工程)		经度	125.817461	纬度	44.667234	环境影响评	价文件类别	环境影响报告表				
	建	设地点坐标(线性工程)	起点经度		起点纬度		终点经度		终点纬度		工程长度 (千米)		
	总投资(万元)		200.00			环保投资	(万元)	20.0	00	所占比例(%)	10.00%		
	单位名称		吉林省惠达:	粮米有限公司	法人代表			单位名称	吉林东北煤炭工业	环保研究有限公司	证书编号	0735224307220	
建设单位	统一社会信用代码 (组织机构代码)		912201837	776585763Y	技术负责人		评价 单位	环评文件项目负责人	宋聯	£ NIÑ	联系电话	0431-8671031	
	週讯地址			达家沟镇仲达街	联系电话	1; 789		通讯地址		长春市绿园	区皓月大路2641号		
			(已建	T工程 +在建)	本工程 (拟建或调整变更)		总体 (已建+在建+拟	建或调整变更)					
			①实际排放量 (吨/年)	②许可排放量 (吨/年)	③預測排放量 (吨/年)	④"以新带老"削减量 (吨/年)	⑥区域平衡替代本工程 削減量 ⁴ (吨/年)		⑦排放增减量 (吨/年)	- 情似重		排放方式	
3		废水量(万吨/年)								● 不排放			
污染		COD								〇 间接排放:	[] 市政管网		
物	废水	製製									□ 集中式工业污水处:	EU J	
排		总磷								○ 直接排放: 受纳水体			
放		总氨											
量		废气量(万标立方米/年)									/		
	1	二氧化硫			0.157			0.157	0.157		1		
	废气	氨氧化物			0.071			0.071	0.071		1		
		颗粒物			0.004			0.004	0.004		/		
	1	挥发性有机物	Inde TE she was det Ad-	*****************			FIG. 30 III					Print Till	
		生态保护目标	响及主要措施		名称	级别	主要保护对象 (目标)	工程影响情况	是否占用	占用面积 (公顷)	生态	防护措施	
目涉及		自然保护区					CH MIZ				□ 避让□ 减级 □		
风景名		饮用水水源保护区	(地表)				1				□ 避让□ 减级□		
情况		饮用水水源保护区	(地下)				1				□ 避让□ 减级□		
		风景名胜区	Shirt teste and the tester of			1				Processing and the second	pour re- timed with the Land	11 12 had 11 12 (30 1)	

^{2、}分类依据: 国民经济行业分类(GB/T 4754-2011)

^{3、}对多点项目仅提供主体工程的中心坐标。

^{4、}指该项目所在区域通过"区域平衡"专为本工程替代削减的量

^{5,} (7) = (3) - (4) - (5), (6) = (2) - (4) + (3)